A B C D E F G H I J K L M N O P Q R S T U V W X Z _ 
All Classes All Packages

A

a - Variable in class cc.redberry.rings.poly.univar.UnivariateResultants.APolynomialRemainderSequence
Initial polynomials
abs() - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is the absolute value of this BigDecimal, and whose scale is this.scale().
abs() - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is the absolute value of this BigInteger.
abs() - Method in class cc.redberry.rings.Rational
Returns the absolute value of this Rational.
abs(BigInteger) - Static method in class cc.redberry.rings.bigint.BigIntegerUtil
 
abs(BigInteger) - Method in class cc.redberry.rings.Integers
 
abs(MathContext) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is the absolute value of this BigDecimal, with rounding according to the context settings.
abs(E) - Method in interface cc.redberry.rings.Ring
Returns the abs value of element (no copy)
abs(I) - Method in class cc.redberry.rings.ImageRing
 
accumulator() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial.PolynomialCollector
 
accumulator() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial.PolynomialCollector
 
aCoFactorMod() - Method in class cc.redberry.rings.poly.univar.HenselLifting.bLinearLift
 
aCoFactorMod() - Method in interface cc.redberry.rings.poly.univar.HenselLifting.LiftableQuintet
Returns first co-factor lifted
aCoFactorMod() - Method in class cc.redberry.rings.poly.univar.HenselLifting.lLinearLift
 
add(int, Poly) - Method in class cc.redberry.rings.util.ListWrapper
 
add(long) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Adds oth to this polynomial and returns it
add(long, long) - Method in class cc.redberry.rings.IntegersZp64
Add mod operation
add(BigDecimal) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is (this + augend), and whose scale is max(this.scale(), augend.scale()).
add(BigDecimal, MathContext) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is (this + augend), with rounding according to the context settings.
add(BigInteger) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is (this + val).
add(BigInteger, BigInteger) - Method in class cc.redberry.rings.Integers
 
add(BigInteger, BigInteger) - Method in class cc.redberry.rings.IntegersZp
 
add(UnivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
add(Rational<E>) - Method in class cc.redberry.rings.Rational
Add that to this
add(Rational<E>, Rational<E>) - Method in class cc.redberry.rings.Rationals
 
add(E) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Adds oth to this polynomial
add(E) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Add constant to this.
add(E) - Method in class cc.redberry.rings.Rational
Add that to this
add(E...) - Method in interface cc.redberry.rings.Ring
Total of the array of elements
add(E, E) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
add(E, E) - Method in interface cc.redberry.rings.Ring
Add two elements
add(I...) - Method in class cc.redberry.rings.ImageRing
 
add(I, I) - Method in class cc.redberry.rings.ImageRing
 
add(Iterable<Term>) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Adds monomials to this polynomial
add(Poly) - Method in interface cc.redberry.rings.poly.IPolynomial
Adds oth to this.
add(Poly) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
 
add(Poly) - Method in class cc.redberry.rings.util.ListWrapper
 
add(Poly...) - Method in interface cc.redberry.rings.poly.IPolynomial
Adds oth to this.
add(Poly, Poly) - Method in class cc.redberry.rings.poly.QuotientRing
 
add(Term) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Adds monomial to this polynomial
add(Term) - Method in class cc.redberry.rings.poly.multivar.MonomialSet
Add monomial to this set
add(Term...) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Adds monomials to this polynomial
addAll(int[]...) - Static method in class cc.redberry.rings.util.ArraysUtil
 
addAll(int[], int...) - Static method in class cc.redberry.rings.util.ArraysUtil
 
addAll(int, Collection<? extends Poly>) - Method in class cc.redberry.rings.util.ListWrapper
 
addAll(long[], long...) - Static method in class cc.redberry.rings.util.ArraysUtil
 
addAll(FactorDecomposition<E>) - Method in class cc.redberry.rings.FactorDecomposition
add all factors from other
addAll(FactorDecomposition<Poly>) - Method in class cc.redberry.rings.poly.PolynomialFactorDecomposition
 
addAll(Collection<? extends Poly>) - Method in class cc.redberry.rings.util.ListWrapper
 
addAll(T[], T...) - Static method in class cc.redberry.rings.util.ArraysUtil
This code is taken from Apache Commons Lang ArrayUtils.
addFactor(E, int) - Method in class cc.redberry.rings.FactorDecomposition
add another factor
addFactor(Poly, int) - Method in class cc.redberry.rings.poly.PolynomialFactorDecomposition
 
addMonomial(E, int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Adds coefficient*x^exponent to this
addMul(UnivariatePolynomial<E>, E) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Adds oth * factor to this
addMutable(E, E) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
addMutable(E, E) - Method in interface cc.redberry.rings.Ring
Adds two elements and destroys the initial content of a.
addUnit(E) - Method in class cc.redberry.rings.FactorDecomposition
add another unit factor
addUnit(E, int) - Method in class cc.redberry.rings.FactorDecomposition
add another unit factor
addUnit(Poly) - Method in class cc.redberry.rings.poly.PolynomialFactorDecomposition
 
advance() - Method in class cc.redberry.rings.poly.multivar.PairedIterator
 
aFactorMod() - Method in class cc.redberry.rings.poly.univar.HenselLifting.bLinearLift
 
aFactorMod() - Method in interface cc.redberry.rings.poly.univar.HenselLifting.LiftableQuintet
Returns first factor lifted
aFactorMod() - Method in class cc.redberry.rings.poly.univar.HenselLifting.lLinearLift
 
ALEX - Static variable in class cc.redberry.rings.poly.multivar.MonomialOrder
Antilexicographic monomial order.
algebraicallyDependentQ(List<Poly>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerMethods
Returns true if a given set of polynomials is algebraically dependent or false otherwise.
AlgebraicNumberField<E extends IUnivariatePolynomial<E>> - Class in cc.redberry.rings.poly
Algebraic number field F(α) represented as a simple field extension, for details see SimpleFieldExtension.
AlgebraicNumberField(E) - Constructor for class cc.redberry.rings.poly.AlgebraicNumberField
Constructs a simple field extension F(α) generated by the algebraic number α with the specified minimal polynomial.
AlgebraicNumberField(Poly) - Static method in class cc.redberry.rings.Rings
Algebraic number field generated by the specified minimal polynomial
algebraicRelations(List<Poly>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerMethods
Gives a list of algebraic relations (annihilating polynomials) for the given list of polynomials
alphas - Variable in class cc.redberry.rings.poly.univar.UnivariateResultants.PolynomialRemainderSequence
alpha coefficients
AMonomial<Term extends AMonomial<Term>> - Class in cc.redberry.rings.poly.multivar
Abstract monomial (degree vector + coefficient).
AMonomial(int[]) - Constructor for class cc.redberry.rings.poly.multivar.AMonomial
 
AMonomial(int[], int) - Constructor for class cc.redberry.rings.poly.multivar.AMonomial
 
AMonomial(DegreeVector) - Constructor for class cc.redberry.rings.poly.multivar.AMonomial
 
AMultivariatePolynomial<Term extends AMonomial<Term>,​Poly extends AMultivariatePolynomial<Term,​Poly>> - Class in cc.redberry.rings.poly.multivar
Parent class for multivariate polynomials.
AMultivariatePolynomial.PolynomialCollector<Term extends AMonomial<Term>,​Poly extends AMultivariatePolynomial<Term,​Poly>> - Class in cc.redberry.rings.poly.multivar
Collector which collects stream of element to a UnivariatePolynomial
and(BigInteger) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is (this & val).
andNot(BigInteger) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is (this & ~val).
andThen(SerializableFunction<? super R, ? extends V>) - Method in interface cc.redberry.rings.util.SerializableFunction
 
APolynomialRemainderSequence(Poly, Poly) - Constructor for class cc.redberry.rings.poly.univar.UnivariateResultants.APolynomialRemainderSequence
 
apply(Function<E, E>) - Method in class cc.redberry.rings.FactorDecomposition
 
apply(T) - Method in interface cc.redberry.rings.util.SerializableFunction
 
applyConstantFactor() - Method in class cc.redberry.rings.FactorDecomposition
Raise all factors to its corresponding exponents
applyExponents() - Method in class cc.redberry.rings.FactorDecomposition
Raise all factors to its corresponding exponents
ARing<E> - Class in cc.redberry.rings
Abstract ring which holds perfect power decomposition of its cardinality.
ARing() - Constructor for class cc.redberry.rings.ARing
 
arrayOf(char, int) - Static method in class cc.redberry.rings.util.ArraysUtil
 
arrayOf(int, int) - Static method in class cc.redberry.rings.util.ArraysUtil
 
arrayOf(long, int) - Static method in class cc.redberry.rings.util.ArraysUtil
 
arrayOf(T, int) - Static method in class cc.redberry.rings.util.ArraysUtil
 
ArraysUtil - Class in cc.redberry.rings.util
This class contains additional methods for manipulating arrays (such as sorting and searching).
ascendingIterator() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
 
ascendingIterator() - Method in class cc.redberry.rings.poly.multivar.MonomialSet
 
asGenericRing() - Method in class cc.redberry.rings.IntegersZp64
Converts this to a generic ring over big integers
asMachineRing() - Method in class cc.redberry.rings.IntegersZp
Converts to a IntegersZp64
asMultipleExtension() - Method in class cc.redberry.rings.poly.SimpleFieldExtension
Returns a view of this as a multiple field extension
asMultivariate() - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
Convert to multivariate polynomial
asMultivariate() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
asMultivariate() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
asMultivariate(IUnivariatePolynomial, int, int, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Converts univariate polynomial to multivariate.
asMultivariate(UnivariatePolynomial<E>, int, int, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Converts univariate polynomial to multivariate.
asMultivariate(UnivariatePolynomial<Poly>, int) - Static method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Convert univariate polynomial over multivariate polynomials to a normal multivariate poly
asMultivariate(UnivariatePolynomial<Poly>, int, boolean) - Static method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
 
asMultivariate(UnivariatePolynomialZp64, int, int, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Converts univariate polynomial to multivariate.
asMultivariate(Comparator<DegreeVector>) - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
Convert to multivariate polynomial
asMultivariate(Comparator<DegreeVector>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
asMultivariate(Comparator<DegreeVector>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
asMultivariate(Comparator<DegreeVector>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
asNormalMultivariate(MultivariatePolynomial<MultivariatePolynomial<E>>) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Converts multivariate polynomial over multivariate polynomial ring to a multivariate polynomial over coefficient ring
asNormalMultivariate(MultivariatePolynomial<MultivariatePolynomial<E>>, int[], int[]) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Converts multivariate polynomial over multivariate polynomial ring to a multivariate polynomial over coefficient ring
asNormalMultivariate(MultivariatePolynomial<MultivariatePolynomialZp64>) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Converts multivariate polynomial over multivariate polynomial ring to a multivariate polynomial over coefficient ring
asNormalMultivariate(MultivariatePolynomial<MultivariatePolynomialZp64>, int[], int[]) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Converts multivariate polynomial over multivariate polynomial ring to a multivariate polynomial over coefficient ring
asNormalMultivariate(MultivariatePolynomial<UnivariatePolynomial<E>>, int) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Converts multivariate polynomial over univariate polynomial ring (R[variable][other_variables]) to a multivariate polynomial over coefficient ring (R[variables])
asNormalMultivariate(MultivariatePolynomial<UnivariatePolynomialZp64>, int) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Converts multivariate polynomial over univariate polynomial ring (Zp[variable][other_variables]) to a multivariate polynomial over coefficient ring (Zp[all_variables])
asOverMultivariate(int...) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Converts this to a multivariate polynomial with coefficients being multivariate polynomials polynomials over variables that is polynomial in R[variables][other_variables]
asOverMultivariate(int...) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
asOverMultivariate(int...) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
asOverMultivariateEliminate(int...) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Converts this to a multivariate polynomial with coefficients being multivariate polynomials polynomials over variables that is polynomial in R[variables][other_variables]
asOverMultivariateEliminate(int[], Comparator<DegreeVector>) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Converts this to a multivariate polynomial with coefficients being multivariate polynomials polynomials over variables that is polynomial in R[variables][other_variables]
asOverMultivariateEliminate(int[], Comparator<DegreeVector>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
asOverMultivariateEliminate(int[], Comparator<DegreeVector>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
asOverPoly(Poly) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Consider coefficients of this as constant polynomials of the same type as a given factory polynomial
asOverRationals(Ring<Rational<E>>, MultivariatePolynomial<E>) - Static method in class cc.redberry.rings.poly.Util
 
asOverRationals(Ring<Rational<E>>, UnivariatePolynomial<E>) - Static method in class cc.redberry.rings.poly.Util
 
asOverUnivariate(int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Converts this to a multivariate polynomial with coefficients being univariate polynomials over variable
asOverUnivariate(int) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
asOverUnivariate(int) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
asOverUnivariateEliminate(int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Converts this to a multivariate polynomial with coefficients being univariate polynomials over variable, the resulting polynomial have (nVariable - 1) multivariate variables (specified variable is eliminated)
asOverUnivariateEliminate(int) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
asOverUnivariateEliminate(int) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
asOverZ64(UnivariatePolynomial<BigInteger>) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Converts poly over BigIntegers to machine-sized polynomial in Z
asOverZp64(MultivariatePolynomial<BigInteger>) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Converts multivariate polynomial over BigIntegers to multivariate polynomial over machine modular integers
asOverZp64(MultivariatePolynomial<BigInteger>, IntegersZp64) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Converts multivariate polynomial over BigIntegers to multivariate polynomial over machine modular integers
asOverZp64(UnivariatePolynomial<BigInteger>) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Converts Zp[x] poly over BigIntegers to machine-sized polynomial in Zp
asOverZp64(UnivariatePolynomial<BigInteger>, IntegersZp64) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Converts Zp[x] poly over BigIntegers to machine-sized polynomial in Zp
asOverZp64Q(UnivariatePolynomial<Rational<BigInteger>>, IntegersZp64) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Converts Zp[x] poly over rationals to machine-sized polynomial in Zp
asPolyZ() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Returns polynomial over Z formed from the coefficients of this
asPolyZ(boolean) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
Returns Z[x] polynomial formed from the coefficients of this.
asPolyZ(MultivariatePolynomial<BigInteger>, boolean) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Returns Z[X] polynomial formed from the coefficients of the poly.
asPolyZSymmetric() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Returns polynomial over Z formed from the coefficients of this represented in symmetric modular form ( -modulus/2 <= cfx <= modulus/2).
asPolyZSymmetric() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
Returns Z[x] polynomial formed from the coefficients of this represented in symmetric modular form ( -modulus/2 <= cfx <= modulus/2).
asPolyZSymmetric(MultivariatePolynomial<BigInteger>) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Converts Zp[x] polynomial to Z[x] polynomial formed from the coefficients of this represented in symmetric modular form (-modulus/2 <= cfx <= modulus/2).
asPolyZSymmetric(UnivariatePolynomial<BigInteger>) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Converts Zp[x] polynomial to Z[x] polynomial formed from the coefficients of this represented in symmetric modular form (-modulus/2 <= cfx <= modulus/2).
assertSameCoefficientRingWith(Poly) - Method in interface cc.redberry.rings.poly.IPolynomial
Checks whether oth and this have the same coefficient ring, if not exception will be thrown
asUnivariate() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Converts this to univariate polynomial or throws exception if conversion is impossible (more than one variable have non zero exponents)
asUnivariate() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
asUnivariate() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
asUnivariate(int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Converts this polynomial to a univariate polynomial over specified variable with the multivariate coefficient ring.
asUnivariate(IPolynomialRing<Poly>, int) - Static method in class cc.redberry.rings.poly.multivar.MultivariateConversions
Given poly in R[x1,x2,...,xN] converts to poly in R[other_variables][variable]
asUnivariate(Poly, int) - Static method in class cc.redberry.rings.poly.multivar.MultivariateConversions
Given poly in R[x1,x2,...,xN] converts to poly in R[other_variables][variable]
asUnivariateEliminate(int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Converts this polynomial to a univariate polynomial over specified variable with the multivariate coefficient ring.
asZp64() - Method in class cc.redberry.rings.IntegersZp
Returns machine integer ring or null if modulus is larger than long
aTerm - Variable in class cc.redberry.rings.poly.multivar.PairedIterator
 

B

b - Variable in class cc.redberry.rings.poly.univar.UnivariateResultants.APolynomialRemainderSequence
Initial polynomials
b_MAX_SUPPORTED_MODULUS - Static variable in class cc.redberry.rings.poly.MachineArithmetic
Max supported modulus
base - Variable in class cc.redberry.rings.poly.univar.HenselLifting.bQuadraticLift
Initial Z[x] poly
base - Variable in class cc.redberry.rings.poly.univar.HenselLifting.lQuadraticLift
Initial Z[x] poly
baseRing - Variable in class cc.redberry.rings.io.Coder
the base ring
baseRing - Variable in class cc.redberry.rings.poly.QuotientRing
the base ring
bCoFactorMod() - Method in class cc.redberry.rings.poly.univar.HenselLifting.bLinearLift
 
bCoFactorMod() - Method in interface cc.redberry.rings.poly.univar.HenselLifting.LiftableQuintet
Returns second co-factor lifted
bCoFactorMod() - Method in class cc.redberry.rings.poly.univar.HenselLifting.lLinearLift
 
betas - Variable in class cc.redberry.rings.poly.univar.UnivariateResultants.PolynomialRemainderSequence
beta coefficients
bFactorMod() - Method in class cc.redberry.rings.poly.univar.HenselLifting.bLinearLift
 
bFactorMod() - Method in interface cc.redberry.rings.poly.univar.HenselLifting.LiftableQuintet
Returns second factor lifted
bFactorMod() - Method in class cc.redberry.rings.poly.univar.HenselLifting.lLinearLift
 
BigDecimal - Class in cc.redberry.rings.bigint
Immutable, arbitrary-precision signed decimal numbers.
BigDecimal(char[]) - Constructor for class cc.redberry.rings.bigint.BigDecimal
Translates a character array representation of a BigDecimal into a BigDecimal, accepting the same sequence of characters as the BigDecimal(String) constructor.
BigDecimal(char[], int, int) - Constructor for class cc.redberry.rings.bigint.BigDecimal
Translates a character array representation of a BigDecimal into a BigDecimal, accepting the same sequence of characters as the BigDecimal(String) constructor, while allowing a sub-array to be specified.
BigDecimal(char[], int, int, MathContext) - Constructor for class cc.redberry.rings.bigint.BigDecimal
Translates a character array representation of a BigDecimal into a BigDecimal, accepting the same sequence of characters as the BigDecimal(String) constructor, while allowing a sub-array to be specified and with rounding according to the context settings.
BigDecimal(char[], MathContext) - Constructor for class cc.redberry.rings.bigint.BigDecimal
Translates a character array representation of a BigDecimal into a BigDecimal, accepting the same sequence of characters as the BigDecimal(String) constructor and with rounding according to the context settings.
BigDecimal(double) - Constructor for class cc.redberry.rings.bigint.BigDecimal
Translates a double into a BigDecimal which is the exact decimal representation of the double's binary floating-point value.
BigDecimal(double, MathContext) - Constructor for class cc.redberry.rings.bigint.BigDecimal
Translates a double into a BigDecimal, with rounding according to the context settings.
BigDecimal(int) - Constructor for class cc.redberry.rings.bigint.BigDecimal
Translates an int into a BigDecimal.
BigDecimal(int, MathContext) - Constructor for class cc.redberry.rings.bigint.BigDecimal
Translates an int into a BigDecimal, with rounding according to the context settings.
BigDecimal(long) - Constructor for class cc.redberry.rings.bigint.BigDecimal
Translates a long into a BigDecimal.
BigDecimal(long, MathContext) - Constructor for class cc.redberry.rings.bigint.BigDecimal
Translates a long into a BigDecimal, with rounding according to the context settings.
BigDecimal(BigInteger) - Constructor for class cc.redberry.rings.bigint.BigDecimal
Translates a BigInteger into a BigDecimal.
BigDecimal(BigInteger, int) - Constructor for class cc.redberry.rings.bigint.BigDecimal
Translates a BigInteger unscaled value and an int scale into a BigDecimal.
BigDecimal(BigInteger, int, MathContext) - Constructor for class cc.redberry.rings.bigint.BigDecimal
Translates a BigInteger unscaled value and an int scale into a BigDecimal, with rounding according to the context settings.
BigDecimal(BigInteger, MathContext) - Constructor for class cc.redberry.rings.bigint.BigDecimal
Translates a BigInteger into a BigDecimal rounding according to the context settings.
BigDecimal(String) - Constructor for class cc.redberry.rings.bigint.BigDecimal
Translates the string representation of a BigDecimal into a BigDecimal.
BigDecimal(String, MathContext) - Constructor for class cc.redberry.rings.bigint.BigDecimal
Translates the string representation of a BigDecimal into a BigDecimal, accepting the same strings as the BigDecimal(String) constructor, with rounding according to the context settings.
BigInteger - Class in cc.redberry.rings.bigint
Immutable arbitrary-precision integers.
BigInteger(byte[]) - Constructor for class cc.redberry.rings.bigint.BigInteger
Translates a byte array containing the two's-complement binary representation of a BigInteger into a BigInteger.
BigInteger(int, byte[]) - Constructor for class cc.redberry.rings.bigint.BigInteger
Translates the sign-magnitude representation of a BigInteger into a BigInteger.
BigInteger(int, int, Random) - Constructor for class cc.redberry.rings.bigint.BigInteger
Constructs a randomly generated positive BigInteger that is probably prime, with the specified bitLength.
BigInteger(int, Random) - Constructor for class cc.redberry.rings.bigint.BigInteger
Constructs a randomly generated BigInteger, uniformly distributed over the range 0 to (2numBits - 1), inclusive.
BigInteger(int, RandomGenerator) - Constructor for class cc.redberry.rings.bigint.BigInteger
Constructs a randomly generated BigInteger, uniformly distributed over the range 0 to (2numBits - 1), inclusive.
BigInteger(String) - Constructor for class cc.redberry.rings.bigint.BigInteger
Translates the decimal String representation of a BigInteger into a BigInteger.
BigInteger(String, int) - Constructor for class cc.redberry.rings.bigint.BigInteger
Translates the String representation of a BigInteger in the specified radix into a BigInteger.
BigInteger(BigInteger) - Constructor for class cc.redberry.rings.bigint.BigInteger
 
BigIntegerUtil - Class in cc.redberry.rings.bigint
 
BigPrimes - Class in cc.redberry.rings.primes
Prime factorization of BigIntegers
bijection(T[], T[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Creates a bijective mapping between two arrays and returns the resulting bijection as array.
bijection(T[], T[], Comparator<? super T>) - Static method in class cc.redberry.rings.util.ArraysUtil
This method is similar to ArraysUtil.bijection(Comparable[], Comparable[]) }, but uses specified comparator.
binarySearch1(int[], int) - Static method in class cc.redberry.rings.util.ArraysUtil
This is the same method to Arrays.binarySearch(int[], int).
binarySearch1(int[], int, int, int) - Static method in class cc.redberry.rings.util.ArraysUtil
This is the same method to Arrays.binarySearch(int[], int, int, int).
bind(String, Element) - Method in class cc.redberry.rings.io.Coder
Add string -> element mapping
bindAlias(String, Element) - Method in class cc.redberry.rings.io.Coder
Add string -> element mapping
bindings - Variable in class cc.redberry.rings.io.Coder
toString bindings
bindings - Variable in class cc.redberry.rings.io.IStringifier.SimpleStringifier
 
bindPolynomialVariable(String, int) - Method in class cc.redberry.rings.io.Coder
Add string -> element mapping
binomial(int, int) - Static method in class cc.redberry.rings.bigint.BigIntegerUtil
Binomial coefficient
binomial(long, long) - Method in class cc.redberry.rings.Integers
Gives a binomial coefficient C(n, k)
bitCount() - Method in class cc.redberry.rings.bigint.BigInteger
Returns the number of bits in the two's complement representation of this BigInteger that differ from its sign bit.
bitLength() - Method in class cc.redberry.rings.bigint.BigInteger
Returns the number of bits in the minimal two's-complement representation of this BigInteger, excluding a sign bit.
bivariateLiftNoLCCorrection0(Poly, Poly[], HenselLifting.IEvaluation<Term, Poly>, int) - Static method in class cc.redberry.rings.poly.multivar.HenselLifting
Fast bivariate Hensel lifting which uses dense representation for bivariate polynomials
boundedTrialDivision(int, int, TIntArrayList) - Static method in class cc.redberry.rings.primes.SmallPrimes
Extract factors in the range PRIME_LAST+2 to maxFactors.
bQuadraticLift(BigInteger, UnivariatePolynomial<BigInteger>, UnivariatePolynomial<BigInteger>, UnivariatePolynomial<BigInteger>, UnivariatePolynomial<BigInteger>, UnivariatePolynomial<BigInteger>) - Constructor for class cc.redberry.rings.poly.univar.HenselLifting.bQuadraticLift
 
BRACKET_CLOSE - Static variable in class cc.redberry.rings.io.Tokenizer
 
BRACKET_OPEN - Static variable in class cc.redberry.rings.io.Tokenizer
 
BrownGCD(MultivariatePolynomial<E>, MultivariatePolynomial<E>) - Static method in class cc.redberry.rings.poly.multivar.MultivariateGCD
Calculates GCD of two multivariate polynomials over Zp using Brown's algorithm with dense interpolation.
BrownGCD(MultivariatePolynomialZp64, MultivariatePolynomialZp64) - Static method in class cc.redberry.rings.poly.multivar.MultivariateGCD
Calculates GCD of two multivariate polynomials over Zp using Brown's algorithm with dense interpolation.
BrownResultant(MultivariatePolynomial<E>, MultivariatePolynomial<E>, int) - Static method in class cc.redberry.rings.poly.multivar.MultivariateResultants
Brown's algorithm for resultant with dense interpolation
BrownResultant(MultivariatePolynomialZp64, MultivariatePolynomialZp64, int) - Static method in class cc.redberry.rings.poly.multivar.MultivariateResultants
Brown's algorithm for resultant with dense interpolation
bTerm - Variable in class cc.redberry.rings.poly.multivar.PairedIterator
 
BuchbergerGB(List<Poly>, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Computes minimized and reduced Groebner basis of a given ideal via Buchberger algorithm.
BuchbergerGB(List<Poly>, Comparator<DegreeVector>, Comparator<GroebnerBases.SyzygyPair>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Computes minimized and reduced Groebner basis of a given ideal via Buchberger algorithm.
buildCachedReciprocals() - Method in class cc.redberry.rings.IntegersZp64
builds a table of cached reciprocals
byte2int(byte[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
byte2short(byte[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
byteValueExact() - Method in class cc.redberry.rings.bigint.BigDecimal
Converts this BigDecimal to a byte, checking for lost information.
byteValueExact() - Method in class cc.redberry.rings.bigint.BigInteger
Converts this BigInteger to a byte, checking for lost information.

C

canConvertToZp64(IPolynomial) - Static method in class cc.redberry.rings.poly.Util
Test whether poly is over Zp with modulus less then 2^63
canonical() - Method in class cc.redberry.rings.FactorDecomposition
Sort factors.
canonical() - Method in interface cc.redberry.rings.poly.IPolynomial
Makes this poly monic if coefficient ring is field, otherwise makes this primitive
canonical() - Method in class cc.redberry.rings.poly.PolynomialFactorDecomposition
 
CantorZassenhaus(Poly, int) - Static method in class cc.redberry.rings.poly.univar.EqualDegreeFactorization
Plain Cantor-Zassenhaus algorithm implementation
cardinality() - Method in class cc.redberry.rings.ImageRing
 
cardinality() - Method in class cc.redberry.rings.Integers
 
cardinality() - Method in class cc.redberry.rings.IntegersZp
 
cardinality() - Method in class cc.redberry.rings.poly.QuotientRing
 
cardinality() - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
cardinality() - Method in class cc.redberry.rings.Rationals
 
cardinality() - Method in interface cc.redberry.rings.Ring
Returns the number of elements in this ring (cardinality) or null if ring is infinite
cc() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Returns the constant coefficient of this polynomial.
cc() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Returns the constant coefficient of this polynomial.
cc() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Returns the constant coefficient
cc.redberry.rings - package cc.redberry.rings
 
cc.redberry.rings.bigint - package cc.redberry.rings.bigint
Provides classes for performing arbitrary-precision integer arithmetic (BigInteger) and arbitrary-precision decimal arithmetic (BigDecimal).
cc.redberry.rings.io - package cc.redberry.rings.io
 
cc.redberry.rings.linear - package cc.redberry.rings.linear
 
cc.redberry.rings.poly - package cc.redberry.rings.poly
 
cc.redberry.rings.poly.multivar - package cc.redberry.rings.poly.multivar
 
cc.redberry.rings.poly.univar - package cc.redberry.rings.poly.univar
 
cc.redberry.rings.primes - package cc.redberry.rings.primes
 
cc.redberry.rings.util - package cc.redberry.rings.util
 
ccAsPoly() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns the constant coefficient as a constant poly
ccAsPoly() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
ccAsPoly() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
ccAsPoly() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
CEILING - cc.redberry.rings.bigint.RoundingMode
Rounding mode to round towards positive infinity.
changeOrder(Comparator<DegreeVector>) - Method in class cc.redberry.rings.poly.multivar.Ideal
Set the monomial order used for Groebner basis of this ideal
characteristic() - Method in class cc.redberry.rings.ImageRing
 
characteristic() - Method in class cc.redberry.rings.Integers
 
characteristic() - Method in class cc.redberry.rings.IntegersZp
 
characteristic() - Method in class cc.redberry.rings.poly.QuotientRing
 
characteristic() - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
characteristic() - Method in class cc.redberry.rings.Rationals
 
characteristic() - Method in interface cc.redberry.rings.Ring
Returns characteristic of this ring
characteristics() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial.PolynomialCollector
 
characteristics() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial.PolynomialCollector
 
ChineseRemainders - Class in cc.redberry.rings
 
ChineseRemainders(long[], long[]) - Static method in class cc.redberry.rings.ChineseRemainders
Runs Chinese Remainders algorithm
ChineseRemainders(long, long, long, long) - Static method in class cc.redberry.rings.ChineseRemainders
Runs Chinese Remainders algorithm
ChineseRemainders(BigInteger[], BigInteger[]) - Static method in class cc.redberry.rings.ChineseRemainders
Runs Chinese Remainders algorithm
ChineseRemainders(BigInteger, BigInteger, BigInteger, BigInteger) - Static method in class cc.redberry.rings.ChineseRemainders
Runs Chinese Remainders algorithm
ChineseRemainders(ChineseRemainders.ChineseRemaindersMagicZp64, long, long) - Static method in class cc.redberry.rings.ChineseRemainders
Runs Chinese Remainders algorithm using the precomputed magic (speed's up computation when several invocations with the same magic performed)
ChineseRemainders(Ring<E>, ChineseRemainders.ChineseRemaindersMagic<E>, E, E) - Static method in class cc.redberry.rings.ChineseRemainders
Runs Chinese Remainders algorithm using the precomputed magic (speed's up computation when several invocations with the same magic performed)
ChineseRemainders(Ring<E>, E[], E[]) - Static method in class cc.redberry.rings.ChineseRemainders
Runs Chinese Remainders algorithm
ChineseRemainders(Ring<E>, E, E, E, E) - Static method in class cc.redberry.rings.ChineseRemainders
Runs Chinese Remainders algorithm
ChineseRemainders.ChineseRemaindersMagic<E> - Class in cc.redberry.rings
Magic data to make CRT faster via precomputing Bezout coefficients
ChineseRemainders.ChineseRemaindersMagicZp64 - Class in cc.redberry.rings
 
ClassicalPRS(UnivariatePolynomial<E>, UnivariatePolynomial<E>) - Static method in class cc.redberry.rings.poly.univar.UnivariateResultants
Computes polynomial remainder sequence using classical division algorithm
ClassicalPRS(UnivariatePolynomialZp64, UnivariatePolynomialZp64) - Static method in class cc.redberry.rings.poly.univar.UnivariateResultants
Computes polynomial remainder sequence using classical division algorithm
ClassicalResultant(Poly, Poly, int) - Static method in class cc.redberry.rings.poly.multivar.MultivariateResultants
Computes resultant via subresultant sequences
clear() - Method in class cc.redberry.rings.util.ListWrapper
 
clearBit(int) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is equivalent to this BigInteger with the designated bit cleared.
clone() - Method in class cc.redberry.rings.FactorDecomposition
 
clone() - Method in interface cc.redberry.rings.poly.IPolynomial
Deep copy of this
clone() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
 
clone() - Method in class cc.redberry.rings.poly.multivar.MonomialSet
 
clone() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
clone() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial.PrecomputedPowersHolder
 
clone() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
clone() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64.lPrecomputedPowersHolder
 
clone() - Method in class cc.redberry.rings.poly.PolynomialFactorDecomposition
 
clone() - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
 
clone() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
clone() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
clone() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
Coder<Element,​Term extends AMonomial<Term>,​Poly extends AMultivariatePolynomial<Term,​Poly>> - Class in cc.redberry.rings.io
High-level parser and stringifier of ring elements.
coefficient - Variable in class cc.redberry.rings.poly.multivar.Monomial
the coefficient
coefficient - Variable in class cc.redberry.rings.poly.multivar.MonomialZp64
the coefficient
coefficientOf(int[], int[]) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns a coefficient before variables^exponents as a multivariate polynomial
coefficientOf(int, int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns a coefficient before variable^exponent as a multivariate polynomial
coefficientRingCardinality() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns cardinality of the coefficient ring of this poly
coefficientRingCardinality() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
coefficientRingCardinality() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
coefficientRingCardinality() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
coefficientRingCardinality() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
coefficientRingCardinality() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
coefficientRingCharacteristic() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns characteristic of the coefficient ring of this poly
coefficientRingCharacteristic() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
coefficientRingCharacteristic() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
coefficientRingCharacteristic() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
coefficientRingCharacteristic() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
coefficientRingCharacteristic() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
coefficientRingPerfectPowerBase() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns base so that coefficientRingCardinality() == base^exponent or null if cardinality is not finite
coefficientRingPerfectPowerBase() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
coefficientRingPerfectPowerBase() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
coefficientRingPerfectPowerBase() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
coefficientRingPerfectPowerBase() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
coefficientRingPerfectPowerBase() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
coefficientRingPerfectPowerExponent() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns exponent so that coefficientRingCardinality() == base^exponent or null if cardinality is not finite
coefficientRingPerfectPowerExponent() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
coefficientRingPerfectPowerExponent() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
coefficientRingPerfectPowerExponent() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
coefficientRingPerfectPowerExponent() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
coefficientRingPerfectPowerExponent() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
coefficientRingToString() - Method in interface cc.redberry.rings.poly.IPolynomial
String representation of the coefficient ring of this
coefficientRingToString(IStringifier<MultivariatePolynomial<E>>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
coefficientRingToString(IStringifier<MultivariatePolynomialZp64>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
coefficientRingToString(IStringifier<UnivariatePolynomial<E>>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
coefficientRingToString(IStringifier<UnivariatePolynomialZ64>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
coefficientRingToString(IStringifier<UnivariatePolynomialZp64>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
coefficientRingToString(IStringifier<Poly>) - Method in interface cc.redberry.rings.poly.IPolynomial
String representation of the coefficient ring of this
coefficients() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Returns iterable over polynomial coefficients
coefficients() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Returns array of polynomial coefficients
coefficientsArray() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Returns array of polynomial coefficients
collection() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
 
collection() - Method in class cc.redberry.rings.poly.multivar.MonomialSet
 
combiner() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial.PolynomialCollector
 
combiner() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial.PolynomialCollector
 
commonDenominator(MultivariatePolynomial<Rational<E>>) - Static method in class cc.redberry.rings.poly.Util
Returns a common denominator of given poly
commonDenominator(UnivariatePolynomial<Rational<E>>) - Static method in class cc.redberry.rings.poly.Util
Returns a common denominator of given poly
commutativeHashCode(int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Returns commutative hash code of the data
commutativeHashCode(int[], int, int) - Static method in class cc.redberry.rings.util.ArraysUtil
Returns commutative hash code of the data
commutativeHashCode(T[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Returns commutative hash code of the data
commutativeHashCode(T[], int, int) - Static method in class cc.redberry.rings.util.ArraysUtil
Returns commutative hash code of the data
COMPARATOR - Static variable in class cc.redberry.rings.util.ArraysUtil
Lexicographic order
COMPARATOR_GENERIC - Static variable in class cc.redberry.rings.util.ArraysUtil
Lexicographic order
COMPARATOR_LONG - Static variable in class cc.redberry.rings.util.ArraysUtil
Lexicographic order
compare(int, int) - Method in interface cc.redberry.rings.util.IntComparator
 
compare(DegreeVector, DegreeVector) - Method in class cc.redberry.rings.poly.multivar.MonomialOrder.EliminationOrder
 
compare(DegreeVector, DegreeVector) - Method in class cc.redberry.rings.poly.multivar.MonomialOrder.GrevLexWithPermutation
 
compare(Rational<E>, Rational<E>) - Method in class cc.redberry.rings.Rationals
 
compare(E, E) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
compare(I, I) - Method in class cc.redberry.rings.ImageRing
 
compare(Poly, Poly) - Method in class cc.redberry.rings.poly.QuotientRing
 
compareTo(BigDecimal) - Method in class cc.redberry.rings.bigint.BigDecimal
Compares this BigDecimal with the specified BigDecimal.
compareTo(BigInteger) - Method in class cc.redberry.rings.bigint.BigInteger
Compares this BigInteger with the specified BigInteger.
compareTo(MultivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
compareTo(MultivariatePolynomialZp64) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
compareTo(UnivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
compareTo(Rational<E>) - Method in class cc.redberry.rings.Rational
 
composition(int[], Poly[]) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Substitutes given polynomial instead of specified variable (that is this(x_1, ..., value, ..., x_N), where value is on the place of specified variable)
composition(int, Poly) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Substitutes given polynomial instead of specified variable (that is this(x_1, ..., value, ..., x_N), where value is on the place of specified variable)
composition(AMultivariatePolynomial) - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
Calculates the composition of this(oth)
composition(AMultivariatePolynomial) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
composition(AMultivariatePolynomial) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
composition(AMultivariatePolynomial) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
composition(UnivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
composition(Ring<Poly>, Poly) - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
Calculates the composition of this(oth) (new instance, so the content of this is not changed))
composition(Ring<sPoly>, sPoly...) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Substitutes given polynomials instead of variables of this (that is this(values_1, ..., values_N))
composition(List<Poly>) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Substitutes given polynomials instead of variables of this (that is this(values_1, ..., values_N))
composition(Poly) - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
Calculates the composition of this(oth) (new instance, so the content of this is not changed))
composition(Poly...) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Substitutes given polynomials instead of variables of this (that is this(values_1, ..., values_N))
composition(sPoly...) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Substitutes given polynomials instead of variables of this (that is this(values_1, ..., values_N))
composition(T, T, T) - Static method in class cc.redberry.rings.poly.univar.ModularComposition
Returns modular composition poly(point) mod polyModulus.
composition(T, T, T, UnivariateDivision.InverseModMonomial<T>) - Static method in class cc.redberry.rings.poly.univar.ModularComposition
Returns modular composition poly(point) mod polyModulus.
compositionBrentKung(T, ArrayList<T>, T, UnivariateDivision.InverseModMonomial<T>, int) - Static method in class cc.redberry.rings.poly.univar.ModularComposition
Returns modular composition poly(point) mod polyModulus calculated using Brent & Kung algorithm for modular composition.
compositionBrentKung(T, T, T, UnivariateDivision.InverseModMonomial<T>) - Static method in class cc.redberry.rings.poly.univar.ModularComposition
Returns modular composition poly(point) mod polyModulus calculated using Brent & Kung algorithm for modular composition.
compositionHorner(UnivariatePolynomialZp64, UnivariatePolynomialZp64, UnivariatePolynomialZp64, UnivariateDivision.InverseModMonomial<UnivariatePolynomialZp64>) - Static method in class cc.redberry.rings.poly.univar.ModularComposition
Returns modular composition poly(point) mod polyModulus calculated with plain Horner scheme.
compress(Object) - Static method in class cc.redberry.rings.util.ZipUtil
Compress object to a string
concat(Tokenizer.CharacterStream, Tokenizer.CharacterStream) - Static method in class cc.redberry.rings.io.Tokenizer
Concat char streams
conjugatesProduct(E) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
Gives the product of all conjugates of given element (except element itself), that is norm(element) / element
Consistent - cc.redberry.rings.linear.LinearSolver.SystemInfo
Consistent system
constant(long) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
Returns constant with specified value
constant(long, long) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
Creates constant polynomial with specified value
constant(IntegersZp64, long) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
Creates constant polynomial with specified value
constant(Ring<E>, E) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Creates constant polynomial over specified ring
contains(Ideal<Term, Poly>) - Method in class cc.redberry.rings.poly.multivar.Ideal
Whether this ideal contains the specified one
contains(Object) - Method in class cc.redberry.rings.util.ListWrapper
 
contains(Poly) - Method in class cc.redberry.rings.poly.multivar.Ideal
Tests whether specified poly is an element of this ideal
containsAll(Collection<?>) - Method in class cc.redberry.rings.util.ListWrapper
 
containsProduct(Ideal<Term, Poly>, Ideal<Term, Poly>) - Method in class cc.redberry.rings.poly.multivar.Ideal
Whether this ideal contains the product of two specified ideals
content - Variable in class cc.redberry.rings.io.Tokenizer.Token
 
content() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Returns the content of this polynomial.
content() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Returns the content of this polynomial.
content() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Returns the content of the poly
content() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
Returns the content of this poly (gcd of its coefficients)
content() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
content(int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Gives the content of this considered as R[variable][other_variables]
contentAsPoly() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns the content of this (gcd of coefficients) as a constant poly
contentAsPoly() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
contentAsPoly() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
contentAsPoly() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
contentExcept(int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Gives the content of this considered as R[other_variables][variable]
contentUnivariate(int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Gives the content of this considered as R[variable][other_variables]
contentUnivariate(int) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
contentUnivariate(int) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
ConvertBasis(List<Poly>, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Converts basis into a basis for desired monomial order
coprimeQ(Iterable<Poly>) - Static method in class cc.redberry.rings.poly.PolynomialMethods
Returns whether specified polynomials are coprime.
coprimeQ(Poly...) - Static method in class cc.redberry.rings.poly.PolynomialMethods
Returns whether specified polynomials are coprime.
copy() - Method in interface cc.redberry.rings.poly.IPolynomial
Deep copy of this (alias for IPolynomial.clone(), required for scala)
copy(Rational<E>) - Method in class cc.redberry.rings.Rationals
 
copy(E) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
copy(E) - Method in interface cc.redberry.rings.Ring
Makes a deep copy of the specified element (for immutable instances the same reference returned).
copy(I) - Method in class cc.redberry.rings.ImageRing
 
copy(mPoly) - Method in class cc.redberry.rings.poly.MultipleFieldExtension
 
copy(Poly) - Method in class cc.redberry.rings.poly.QuotientRing
 
create(int[]) - Method in interface cc.redberry.rings.poly.multivar.IMonomialAlgebra
creates term with specified exponents and unit coefficient
create(int[]) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebra
 
create(int[]) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebraZp64
 
create(int, IntegersZp64, Comparator<DegreeVector>, MonomialSet<MonomialZp64>) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Creates multivariate polynomial from a set of monomials
create(int, IntegersZp64, Comparator<DegreeVector>, MonomialZp64...) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Creates multivariate polynomial from a list of monomial terms
create(int, IntegersZp64, Comparator<DegreeVector>, Iterable<MonomialZp64>) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Creates multivariate polynomial from a list of monomial terms
create(int, Ring<E>, Comparator<DegreeVector>, Monomial<E>...) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Creates multivariate polynomial from a list of monomial terms
create(int, Ring<E>, Comparator<DegreeVector>, Iterable<Monomial<E>>) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Creates multivariate polynomial from a list of monomial terms
create(long...) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Creates new univariate Z[x] polynomial
create(long...) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
Creates Z[x] polynomial from the specified coefficients
create(long, long[]) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
Creates poly with specified coefficients represented as signed integers reducing them modulo modulus
create(IntegersZp64, long[]) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
Creates poly with specified coefficients represented as signed integers reducing them modulo modulus
create(DegreeVector) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Creates multivariate polynomial over the same ring as this with the single monomial
create(DegreeVector) - Method in interface cc.redberry.rings.poly.multivar.IMonomialAlgebra
creates term with specified exponents and unit coefficient
create(DegreeVector) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebra
 
create(DegreeVector) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebraZp64
 
create(DegreeVector) - Method in class cc.redberry.rings.poly.MultivariateRing
Creates multivariate polynomial over the same ring as this with the single monomial
create(Ring<BigInteger>, long...) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Creates univariate polynomial over specified ring (with integer elements) with the specified coefficients
create(Ring<E>, E...) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Creates new univariate polynomial over specified ring with the specified coefficients.
create(Iterable<Term>) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Creates multivariate polynomial over the same ring as this from the list of monomials
create(List<Poly>) - Static method in class cc.redberry.rings.poly.multivar.Ideal
Creates ideal given by a list of generators.
create(List<Poly>, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.Ideal
Creates ideal given by a list of generators.
create(Poly...) - Static method in class cc.redberry.rings.poly.multivar.Ideal
Creates ideal given by a list of generators.
create(Term) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Creates multivariate polynomial over the same ring as this with the single monomial
create(Term...) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Creates multivariate polynomial over the same ring as this from the list of monomials
createArray(int) - Method in interface cc.redberry.rings.poly.IPolynomial
overcome Java generics...
createArray(int) - Method in interface cc.redberry.rings.poly.multivar.IMonomialAlgebra
creates generic array of specified length
createArray(int) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebra
 
createArray(int) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebraZp64
 
createArray(int) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
createArray(int) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
createArray(int) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
createArray(int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
createArray(int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
createArray(int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
createArray(int) - Method in class cc.redberry.rings.Rationals
 
createArray(int) - Method in interface cc.redberry.rings.Ring
Creates generic array of ring elements of specified length
createArray(UnivariatePolynomial<E>, UnivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
createArray(UnivariatePolynomialZp64, UnivariatePolynomialZp64) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
createArray(E) - Method in interface cc.redberry.rings.Ring
Creates generic array with single element
createArray(E, E) - Method in interface cc.redberry.rings.Ring
Creates generic array of {a, b}
createArray(E, E, E) - Method in interface cc.redberry.rings.Ring
Creates generic array of {a, b, c}
createArray(Poly) - Method in interface cc.redberry.rings.poly.IPolynomial
overcome Java generics...
createArray(Poly, Poly) - Method in interface cc.redberry.rings.poly.IPolynomial
overcome Java generics...
createArray(Poly, Poly, Poly) - Method in interface cc.redberry.rings.poly.IPolynomial
overcome Java generics...
createArray2d(int) - Method in interface cc.redberry.rings.poly.IPolynomial
overcome Java generics...
createArray2d(int) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
createArray2d(int) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
createArray2d(int) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
createArray2d(int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
createArray2d(int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
createArray2d(int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
createArray2d(int) - Method in class cc.redberry.rings.Rationals
 
createArray2d(int) - Method in interface cc.redberry.rings.Ring
Creates 2d array of ring elements of specified length
createArray2d(int, int) - Method in interface cc.redberry.rings.poly.IPolynomial
overcome Java generics...
createArray2d(int, int) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
createArray2d(int, int) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
createArray2d(int, int) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
createArray2d(int, int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
createArray2d(int, int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
createArray2d(int, int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
createArray2d(int, int) - Method in class cc.redberry.rings.Rationals
 
createArray2d(int, int) - Method in interface cc.redberry.rings.Ring
Creates 2d array of ring elements of specified shape
createConstant(long) - Method in interface cc.redberry.rings.poly.IPolynomial
Creates constant polynomial with specified value
createConstant(long) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Creates constant polynomial with specified value
createConstant(E) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Creates constant polynomial with specified value
createConstant(E) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Creates constant polynomial with specified value (over the same ring)
createConstantFromTerm(Monomial<E>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
createConstantFromTerm(MonomialZp64) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
createConstantFromTerm(Term) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Creates multivariate polynomial over the same ring as this with the single constant element taken from given monomial
createFromArray(long[]) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
createFromArray(long[]) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
createFromArray(E[]) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Creates new poly with the specified coefficients (over the same ring)
createLinear(int, long, long) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Creates linear polynomial of the form cc + lc * variable
createLinear(int, E, E) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Creates linear polynomial of the form cc + lc * variable
createLinear(E, E) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Creates linear polynomial of form cc + x * lc (over the same ring)
createLinearLift(long, UnivariatePolynomial<BigInteger>, UnivariatePolynomialZp64, UnivariatePolynomialZp64) - Static method in class cc.redberry.rings.poly.univar.HenselLifting
Creates linear Hensel lift.
createLinearLift(long, UnivariatePolynomialZ64, UnivariatePolynomialZp64, UnivariatePolynomialZp64) - Static method in class cc.redberry.rings.poly.univar.HenselLifting
Creates linear Hensel lift.
createLinearLift(BigInteger, UnivariatePolynomial<BigInteger>, UnivariatePolynomialZp64, UnivariatePolynomialZp64) - Static method in class cc.redberry.rings.poly.univar.HenselLifting
Creates linear Hensel lift.
createLinearLift(BigInteger, UnivariatePolynomialZ64, UnivariatePolynomialZp64, UnivariatePolynomialZp64) - Static method in class cc.redberry.rings.poly.univar.HenselLifting
Creates linear Hensel lift.
createMagic(long, long) - Static method in class cc.redberry.rings.ChineseRemainders
Magic for fast repeated Chinese Remainders
createMagic(Ring<E>, E, E) - Static method in class cc.redberry.rings.ChineseRemainders
Magic for fast repeated Chinese Remainders
createMonomial(int) - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
Creates new monomial x^degree (with the same coefficient ring)
createMonomial(int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
createMonomial(int, int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Creates monomial over the same ring as this of the form variable ^ degree
createMonomial(long, int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
createMonomial(long, int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
createMonomial(E, int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Creates monomial coefficient * x^degree (over the same ring)
createMonomialMod(long, T, UnivariateDivision.InverseModMonomial<T>) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialArithmetic
Creates x^exponent mod polyModulus.
createMonomialMod(BigInteger, T, UnivariateDivision.InverseModMonomial<T>) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialArithmetic
Creates x^exponent mod polyModulus.
createOne() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns the new instance of unit polynomial (with the same coefficient ring)
createOne() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
createOne() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
createOne() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
createQuadraticLift(long, UnivariatePolynomialZ64, UnivariatePolynomialZp64, UnivariatePolynomialZp64) - Static method in class cc.redberry.rings.poly.univar.HenselLifting
Creates quadratic Hensel lift.
createQuadraticLift(BigInteger, UnivariatePolynomial<BigInteger>, UnivariatePolynomial<BigInteger>, UnivariatePolynomial<BigInteger>) - Static method in class cc.redberry.rings.poly.univar.HenselLifting
Creates quadratic Hensel lift.
createQuadraticLift(BigInteger, UnivariatePolynomial<BigInteger>, UnivariatePolynomialZp64, UnivariatePolynomialZp64) - Static method in class cc.redberry.rings.poly.univar.HenselLifting
Creates quadratic Hensel lift.
createSieve(int) - Static method in class cc.redberry.rings.primes.SieveOfAtkin
 
createSieve(BigInteger) - Static method in class cc.redberry.rings.primes.SieveOfAtkin
 
createUnsafe(long, long[]) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
data is not reduced modulo modulus
createUnsafe(IntegersZp64, long[]) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
data is not reduced modulo modulus
createUnsafe(Ring<E>, E[]) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
skips ring.setToValueOf(data)
createZero() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns the new instance of zero polynomial (with the same coefficient ring)
createZero() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
createZero() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
createZero() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
createZeroesArray(int) - Method in interface cc.redberry.rings.Ring
Creates array filled with zero elements
createZeroesArray2d(int, int) - Method in interface cc.redberry.rings.Ring
Creates 2d array of ring elements of specified shape filled with zero elements
currentString() - Method in interface cc.redberry.rings.io.Tokenizer.CharacterStream
string containing current char
cyclic(int) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBasesData
 

D

DECIMAL128 - Static variable in class cc.redberry.rings.bigint.MathContext
A MathContext object with a precision setting matching the IEEE 754R Decimal128 format, 34 digits, and a rounding mode of HALF_EVEN, the IEEE 754R default.
DECIMAL32 - Static variable in class cc.redberry.rings.bigint.MathContext
A MathContext object with a precision setting matching the IEEE 754R Decimal32 format, 7 digits, and a rounding mode of HALF_EVEN, the IEEE 754R default.
DECIMAL64 - Static variable in class cc.redberry.rings.bigint.MathContext
A MathContext object with a precision setting matching the IEEE 754R Decimal64 format, 16 digits, and a rounding mode of HALF_EVEN, the IEEE 754R default.
decode(String) - Method in class cc.redberry.rings.io.Coder
Decode element from its string representation (#parse)
decrement() - Method in class cc.redberry.rings.bigint.BigInteger
 
decrement() - Method in interface cc.redberry.rings.poly.IPolynomial
Subtracts 1 from this
decrement() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
decrement() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
decrement() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
decrement(E) - Method in interface cc.redberry.rings.Ring
Returns element - 1
decrement(I) - Method in class cc.redberry.rings.ImageRing
 
deepClone(int[][]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
deepClone(Object[][]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
DEFAULT - Static variable in class cc.redberry.rings.poly.multivar.MonomialOrder
Default monomial order (GREVLEX)
DEFAULT - Static variable in interface cc.redberry.rings.util.IntComparator
 
defaultSelectionStrategy(Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Default selection strategy (with or without sugar)
defaultVar() - Static method in interface cc.redberry.rings.io.IStringifier
 
defaultVar(int, int) - Static method in interface cc.redberry.rings.io.IStringifier
 
defaultVars(int) - Static method in interface cc.redberry.rings.io.IStringifier
Sequence of strings "a", "b", "c" etc.
degree() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns the degree of this polynomial
degree() - Method in class cc.redberry.rings.poly.MultipleFieldExtension
Returns the degree of this filed extension (that is the degree of primitive element)
degree() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns the total degree of this polynomial, that is the maximal total degree among all terms
degree() - Method in class cc.redberry.rings.poly.multivar.GroebnerBases.HilbertSeries
The degree of ideal
degree() - Method in class cc.redberry.rings.poly.multivar.Ideal
Returns the affine degree of this ideal
degree() - Method in class cc.redberry.rings.poly.SimpleFieldExtension
Returns the degree of this filed extension (that is the degree of minimal polynomial)
degree() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
degree(int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns the degree of this polynomial with respect to specified variable
degree(int...) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Gives the degree in specified variables
DEGREE_OF_RANDOM_POLY - Static variable in class cc.redberry.rings.poly.MultivariateRing
Default degree of polynomial generated with MultivariateRing.randomElementTree(RandomGenerator)
degreeMax() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns the maximal degree of variables in this polynomial
degrees() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns an array of degrees of all variables, so that is i-th element of the result is the polynomial degree with respect to i-th variable
degrees() - Method in class cc.redberry.rings.poly.multivar.MonomialSet
 
degrees(int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns the array of exponents in which variable occurs in this polynomial
degreesRef() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
returns reference (content must not be modified)
degreeSum() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
DegreeVector - Class in cc.redberry.rings.poly.multivar
Degree vector.
DegreeVector(int[]) - Constructor for class cc.redberry.rings.poly.multivar.DegreeVector
 
DegreeVector(int[], int) - Constructor for class cc.redberry.rings.poly.multivar.DegreeVector
 
denominator() - Method in class cc.redberry.rings.Rational
Denominator of this rational
denominatorExponent - Variable in class cc.redberry.rings.poly.multivar.GroebnerBases.HilbertSeries
Denominator exponent of reduced HPS(t) (that is ideal Krull dimension)
derivative() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Gives the derivative vector
derivative() - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
Returns the formal derivative of this poly (new instance, so the content of this is not changed)
derivative() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
derivative() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
derivative() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
derivative(int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Gives partial derivative with respect to specified variable (new instance created)
derivative(int, int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Gives partial derivative of specified order with respect to specified variable (new instance created)
derivative(int, int) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
derivative(int, int) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
descendingIterator() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
 
descendingIterator() - Method in class cc.redberry.rings.poly.multivar.MonomialSet
 
dimension() - Method in class cc.redberry.rings.poly.multivar.GroebnerBases.HilbertSeries
The dimension of ideal
dimension() - Method in class cc.redberry.rings.poly.multivar.Ideal
Returns the affine dimension of this ideal
DiophantineEquations - Class in cc.redberry.rings.poly.univar
 
DiophantineEquations.DiophantineSolver<Poly extends IUnivariatePolynomial<Poly>> - Class in cc.redberry.rings.poly.univar
Solves a1 * x1 + a2 * x2 + ...
DiophantineSolver(Poly[]) - Constructor for class cc.redberry.rings.poly.univar.DiophantineEquations.DiophantineSolver
 
Discriminant(UnivariatePolynomial<E>) - Static method in class cc.redberry.rings.poly.univar.UnivariateResultants
Computes discriminant of polynomial
Discriminant(UnivariatePolynomialZp64) - Static method in class cc.redberry.rings.poly.univar.UnivariateResultants
Computes discriminant of polynomial
Discriminant(Poly, int) - Static method in class cc.redberry.rings.poly.multivar.MultivariateResultants
Computes discriminant of polynomial
DiscriminantAsPoly(Poly) - Static method in class cc.redberry.rings.poly.univar.UnivariateResultants
Computes discriminant of polynomial and returns the result as a constant poly
DistinctDegreeFactorization - Class in cc.redberry.rings.poly.univar
Distinct-degree factorization of univariate polynomials over finite fields.
DistinctDegreeFactorization(UnivariatePolynomialZp64) - Static method in class cc.redberry.rings.poly.univar.DistinctDegreeFactorization
Performs distinct-degree factorization for square-free polynomial poly.
DistinctDegreeFactorization(Poly) - Static method in class cc.redberry.rings.poly.univar.DistinctDegreeFactorization
Performs distinct-degree factorization for square-free polynomial poly.
DistinctDegreeFactorizationPlain(UnivariatePolynomialZp64) - Static method in class cc.redberry.rings.poly.univar.DistinctDegreeFactorization
Performs distinct-degree factorization for square-free polynomial poly using plain incremental exponents algorithm.
DistinctDegreeFactorizationPrecomputedExponents(UnivariatePolynomialZp64) - Static method in class cc.redberry.rings.poly.univar.DistinctDegreeFactorization
Performs distinct-degree factorization for square-free polynomial poly using plain incremental exponents algorithm with precomputed exponents.
DistinctDegreeFactorizationShoup(Poly) - Static method in class cc.redberry.rings.poly.univar.DistinctDegreeFactorization
Performs distinct-degree factorization for square-free polynomial poly using Victor Shoup's baby step / giant step algorithm.
divide(long) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Divides this polynomial by a factor
divide(long) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
Divide by specified value
divide(long, long) - Method in class cc.redberry.rings.IntegersZp64
Subtract mod operation
divide(BigDecimal) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is (this / divisor), and whose preferred scale is (this.scale() - divisor.scale()); if the exact quotient cannot be represented (because it has a non-terminating decimal expansion) an ArithmeticException is thrown.
divide(BigDecimal, int) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is (this / divisor), and whose scale is this.scale().
divide(BigDecimal, int, int) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is (this / divisor), and whose scale is as specified.
divide(BigDecimal, int, RoundingMode) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is (this / divisor), and whose scale is as specified.
divide(BigDecimal, MathContext) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is (this / divisor), with rounding according to the context settings.
divide(BigDecimal, RoundingMode) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is (this / divisor), and whose scale is this.scale().
divide(BigInteger) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is (this / val).
divide(BigInteger, int) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is (this / val), using multiple threads if the numbers are sufficiently large.
divide(BigInteger, BigInteger) - Method in class cc.redberry.rings.IntegersZp
 
divide(Rational<E>) - Method in class cc.redberry.rings.Rational
Divide this by oth
divide(E) - Method in class cc.redberry.rings.Rational
Divide this by oth
DIVIDE - Static variable in class cc.redberry.rings.io.Tokenizer
 
divideAndRemainder(BigDecimal) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a two-element BigDecimal array containing the result of divideToIntegralValue followed by the result of remainder on the two operands.
divideAndRemainder(BigDecimal, MathContext) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a two-element BigDecimal array containing the result of divideToIntegralValue followed by the result of remainder on the two operands calculated with rounding according to the context settings.
divideAndRemainder(BigInteger) - Method in class cc.redberry.rings.bigint.BigInteger
Returns an array of two BigIntegers containing (this / val) followed by (this % val).
divideAndRemainder(BigInteger, int) - Method in class cc.redberry.rings.bigint.BigInteger
Returns an array of two BigIntegers containing (this / val) followed by (this % val).
Uses a specified number of threads if the inputs are sufficiently large.
divideAndRemainder(BigInteger, BigInteger) - Method in class cc.redberry.rings.Integers
 
divideAndRemainder(BigInteger, BigInteger) - Method in class cc.redberry.rings.IntegersZp
 
divideAndRemainder(UnivariatePolynomial<E>, UnivariatePolynomial<E>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Returns quotient and remainder.
divideAndRemainder(UnivariatePolynomialZ64, UnivariatePolynomialZ64, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Returns {quotient, remainder} or null if the division is not possible.
divideAndRemainder(UnivariatePolynomialZp64, UnivariatePolynomialZp64, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Returns quotient and remainder.
divideAndRemainder(Rational<E>, Rational<E>) - Method in class cc.redberry.rings.Rationals
 
divideAndRemainder(E, E) - Method in class cc.redberry.rings.poly.AlgebraicNumberField
 
divideAndRemainder(E, E) - Method in class cc.redberry.rings.poly.FiniteField
 
divideAndRemainder(E, E) - Method in interface cc.redberry.rings.Ring
Returns quotient and remainder of dividend / divider
divideAndRemainder(I, I) - Method in class cc.redberry.rings.ImageRing
 
divideAndRemainder(Poly, Poly) - Static method in class cc.redberry.rings.poly.multivar.MultivariateDivision
Performs multivariate division with remainder.
divideAndRemainder(Poly, Poly) - Method in class cc.redberry.rings.poly.MultivariateRing
 
divideAndRemainder(Poly, Poly) - Static method in class cc.redberry.rings.poly.PolynomialMethods
Returns quotient and remainder of a and b.
divideAndRemainder(Poly, Poly) - Method in class cc.redberry.rings.poly.QuotientRing
 
divideAndRemainder(Poly, Poly) - Method in class cc.redberry.rings.poly.UnivariateRing
 
divideAndRemainder(Poly, Poly...) - Static method in class cc.redberry.rings.poly.multivar.MultivariateDivision
Performs multivariate division with remainder.
divideAndRemainder(Poly, Poly, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Returns {quotient, remainder} of dividend and divider or null if the division is not possible.
divideAndRemainderClassic(UnivariatePolynomial<E>, UnivariatePolynomial<E>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Classical algorithm for division with remainder.
divideAndRemainderClassic(UnivariatePolynomialZp64, UnivariatePolynomialZp64, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Classical algorithm for division with remainder.
divideAndRemainderFast(UnivariatePolynomial<E>, UnivariatePolynomial<E>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Fast algorithm for division with remainder using Newton's iteration.
divideAndRemainderFast(UnivariatePolynomial<E>, UnivariatePolynomial<E>, UnivariateDivision.InverseModMonomial<UnivariatePolynomial<E>>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Fast algorithm for division with remainder using Newton's iteration.
divideAndRemainderFast(UnivariatePolynomialZp64, UnivariatePolynomialZp64, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Fast algorithm for division with remainder using Newton's iteration.
divideAndRemainderFast(UnivariatePolynomialZp64, UnivariatePolynomialZp64, UnivariateDivision.InverseModMonomial<UnivariatePolynomialZp64>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Fast algorithm for division with remainder using Newton's iteration.
divideAndRemainderFast(Poly, Poly, UnivariateDivision.InverseModMonomial<Poly>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Returns {quotient, remainder} of dividend and divider
divideAndRemainderFast0(Poly, Poly, UnivariateDivision.InverseModMonomial<Poly>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
fast division implementation
divideAndRemainderParallel(BigInteger) - Method in class cc.redberry.rings.bigint.BigInteger
Returns an array of two BigIntegers containing (this / val) followed by (this % val).
Uses multiple threads if the numbers are sufficiently large.
divideByLC(MultivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
divideByLC(MultivariatePolynomialZp64) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
divideByLC(UnivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
divideByLC(UnivariatePolynomialZ64) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
divideByLC(UnivariatePolynomialZp64) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
divideByLC(Poly) - Method in interface cc.redberry.rings.poly.IPolynomial
Divides this polynomial by the leading coefficient of other or returns null (causing loss of internal data) if some of the elements can't be exactly divided by the other.lc().
divideDegreeVectorOrNull(DegreeVector) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Divides this polynomial by a monomial or returns null (causing loss of internal data) if some of the elements can't be exactly divided by the monomial.
divideExact(BigInteger) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is (this / val).
divideExact(DegreeVector, Term) - Method in interface cc.redberry.rings.poly.multivar.IMonomialAlgebra
Gives quotient dividend / divider or throws ArithmeticException if exact division is not possible
divideExact(E) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Divides this polynomial by a factor or throws exception if exact division is not possible
divideExact(E) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Divides this polynomial by a factor or throws exception if exact division is not possible
divideExact(E, E) - Method in interface cc.redberry.rings.Ring
Divides dividend by divider or throws ArithmeticException if exact division is not possible
divideExact(Poly, Poly) - Static method in class cc.redberry.rings.poly.multivar.MultivariateDivision
Divides dividend by divider or throws exception if exact division is not possible
divideExact(Poly, Poly) - Static method in class cc.redberry.rings.poly.PolynomialMethods
Returns the quotient of a and b or throws ArithmeticException if exact division is not possible
divideExact(Poly, Poly, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Divides dividend by divider or throws ArithmeticException if exact division is not possible
divideExact(Term, Term) - Method in interface cc.redberry.rings.poly.multivar.IMonomialAlgebra
Gives quotient dividend / divider or throws ArithmeticException if exact division is not possible
divideExactMutable(E, E) - Method in interface cc.redberry.rings.Ring
Internal API
divideOrNull(int[]) - Method in class cc.redberry.rings.poly.multivar.AMonomial
Gives quotient this / oth or null if exact division is not possible (e.g.
divideOrNull(long) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
Divides this polynomial by a factor or returns null (causing loss of internal data) if some of the elements can't be exactly divided by the factor.
divideOrNull(DegreeVector) - Method in class cc.redberry.rings.poly.multivar.AMonomial
Gives quotient this / oth or null if exact division is not possible (e.g.
divideOrNull(Monomial<E>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
divideOrNull(Monomial<E>, Monomial<E>) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebra
 
divideOrNull(MonomialZp64) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
divideOrNull(MonomialZp64, MonomialZp64) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebraZp64
 
divideOrNull(E) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Divides this polynomial by a factor or returns null (causing loss of internal data) if some of the elements can't be exactly divided by the factor.
divideOrNull(E) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Divides this polynomial by a factor or returns null (causing loss of internal data) if some of the elements can't be exactly divided by the factor.
divideOrNull(E, E) - Method in interface cc.redberry.rings.Ring
Divides dividend by divider or returns null if exact division is not possible
divideOrNull(Poly, Poly) - Static method in class cc.redberry.rings.poly.multivar.MultivariateDivision
Divides dividend by divider or returns null if exact division is not possible
divideOrNull(Poly, Poly) - Static method in class cc.redberry.rings.poly.PolynomialMethods
Returns the quotient of a and b or throws ArithmeticException if exact division is not possible
divideOrNull(Poly, Poly, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Divides dividend by divider or returns null if exact division is not possible
divideOrNull(Term) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Divides this polynomial by a monomial or returns null (causing loss of internal data) if some of the elements can't be exactly divided by the monomial.
divideOrNull(Term, Term) - Method in interface cc.redberry.rings.poly.multivar.IMonomialAlgebra
Gives quotient dividend / divider or null if exact division is not possible
divideOverRationals(Ring<Rational<E>>, MultivariatePolynomial<E>, E) - Static method in class cc.redberry.rings.poly.Util
 
divideOverRationals(Ring<Rational<E>>, UnivariatePolynomial<E>, E) - Static method in class cc.redberry.rings.poly.Util
 
divideParallel(BigInteger) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is (this / val), using multiple threads if the numbers are sufficiently large.
dividesQ(Poly, Poly) - Static method in class cc.redberry.rings.poly.multivar.MultivariateDivision
Tests whether divisor is a divisor of poly
divideToIntegralValue(BigDecimal) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is the integer part of the quotient (this / divisor) rounded down.
divideToIntegralValue(BigDecimal, MathContext) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is the integer part of (this / divisor).
doMinimize(int, int) - Method in interface cc.redberry.rings.poly.multivar.GroebnerBases.MinimizationStrategy
true means "yes, do minimization and reduction", false means "just keep all generators as is"
doubleValue() - Method in class cc.redberry.rings.bigint.BigDecimal
Converts this BigDecimal to a double.
doubleValue() - Method in class cc.redberry.rings.bigint.BigInteger
Converts this BigInteger to a double.
DOWN - cc.redberry.rings.bigint.RoundingMode
Rounding mode to round towards zero.
dropCoefficientOf(int[], int[]) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns a coefficient before variables^exponents as a multivariate polynomial and drops all such terms from this
dropExponents() - Method in class cc.redberry.rings.FactorDecomposition
Set all exponents to one
dropFactor(int) - Method in class cc.redberry.rings.FactorDecomposition
Remove specified factor
dropSelect(int[]) - Method in class cc.redberry.rings.poly.multivar.AMonomial
Picks only specified exponents
dropSelectVariables(int...) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Makes a copy of this with all variables except specified ones replaced with the units
dropUnit() - Method in class cc.redberry.rings.FactorDecomposition
Drops constant factor from this (new instance returned)
dropVariable() - Method in class cc.redberry.rings.poly.MultivariateRing
 
dropVariable(int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Makes a copy of this with the specified variable dropped
dropVariables(int[]) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Makes a copy of this with the specified variable replaced with the unit
dummy() - Static method in interface cc.redberry.rings.io.IStringifier
Dummy stringifier
DUMMY - Static variable in interface cc.redberry.rings.io.IStringifier
Dummy stringifier
dv() - Method in class cc.redberry.rings.poly.multivar.AMonomial
Drop the coefficient
dv() - Method in class cc.redberry.rings.poly.multivar.DegreeVector
 
dvDivideExact(int[]) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Gives quotient this / oth or throws ArithmeticException if exact division is not possible (e.g.
dvDivideExact(DegreeVector) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Gives quotient this / oth or throws ArithmeticException if exact division is not possible (e.g.
dvDivideOrNull(int[]) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Gives quotient this / oth or null if exact division is not possible (e.g.
dvDivideOrNull(int, int) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Divides this by variable^exponent
dvDivideOrNull(DegreeVector) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Gives quotient this / oth or null if exact division is not possible (e.g.
dvDivisibleBy(int[]) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Tests whether this can be divided by oth degree vector
dvDivisibleBy(DegreeVector) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Tests whether this can be divided by oth degree vector
dvDropSelect(int[]) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Picks only specified exponents
dvEquals(DegreeVector) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
 
dvInsert(int) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Inserts new variable
dvInsert(int, int) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Inserts new variables
dvJoinNewVariable() - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Joins new variable (with zero exponent) to degree vector
dvJoinNewVariables(int) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Joins new variables (with zero exponents) to degree vector
dvJoinNewVariables(int, int[]) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
internal API
dvMap(int, int[]) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Creates degree vector with old variables renamed to specified mapping variables
dvMultiply(int[]) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Multiplies this by oth
dvMultiply(int, int) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Multiplies this by variable^exponent
dvMultiply(DegreeVector) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Multiplies this by oth
dvRange(int, int) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Selects range from this
dvSelect(int) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Sets exponents of all variables except the specified variable to zero
dvSelect(int[]) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Set's exponents of all variables except specified variables to zero
dvSet(int, int) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Set's exponent of specified variable to specified value
dvSetNVariables(int) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Sets the number of variables
dvSetZero(int) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Set exponent of specified var to zero
dvSetZero(int[]) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Set exponents of specified variables to zero
dvToString() - Method in class cc.redberry.rings.poly.multivar.AMonomial
 
dvToString(String[]) - Method in class cc.redberry.rings.poly.multivar.AMonomial
 
dvTotalDegree(int...) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Returns the total degree in specified variables
dvWithout(int) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Drops specified variable (number of variables will be reduced)
dvWithout(int[]) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Drops specified variables (number of variables will be reduced)

E

ecart() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns degreeSum - lt().totalDegree
EEZGCD(Poly, Poly) - Static method in class cc.redberry.rings.poly.multivar.MultivariateGCD
Calculates GCD of two multivariate polynomials over Zp using enhanced EZ algorithm
eliminate(int[], long[]) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Returns a copy of this with values substituted for variables
eliminate(int[], E[]) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Returns a copy of this with values substituted for variables
eliminate(int, long) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Substitutes value for variable and eliminates variable from the list of variables so that the resulting polynomial has result.nVariables = this.nVariables - 1.
eliminate(int, long) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Substitutes value for variable and eliminates variable from the list of variables so that the resulting polynomial has result.nVariables = this.nVariables - 1.
eliminate(int, E) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Substitutes value for variable and eliminates variable from the list of variables so that the resulting polynomial has result.nVariables = this.nVariables - 1.
eliminate(List<Poly>, int) - Static method in class cc.redberry.rings.poly.multivar.GroebnerMethods
Eliminates specified variables from the given ideal.
eliminate(List<Poly>, int...) - Static method in class cc.redberry.rings.poly.multivar.GroebnerMethods
Eliminates specified variables from the given ideal.
EliminationOrder(Comparator<DegreeVector>, int) - Constructor for class cc.redberry.rings.poly.multivar.MonomialOrder.EliminationOrder
 
empty(Ring<E>) - Static method in class cc.redberry.rings.FactorDecomposition
Empty factorization
empty(Poly) - Static method in class cc.redberry.rings.poly.multivar.Ideal
Creates empty ideal
empty(Poly) - Static method in class cc.redberry.rings.poly.PolynomialFactorDecomposition
Empty factorization
empty(Poly, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.Ideal
Creates empty ideal
encloseMathParenthesisInSumIfNeeded(String) - Static method in interface cc.redberry.rings.io.IStringifier
Enclose with math parenthesis if needed (e.g.
encode(Element) - Method in class cc.redberry.rings.io.Coder
Encode element to its string representation (#stringify)
END - Static variable in class cc.redberry.rings.io.Tokenizer
 
ensureInternalCapacity(int) - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
ensures that internal storage has enough size to store desiredCapacity elements
ensureInternalCapacity(int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
ensureOverField(IPolynomial...) - Static method in class cc.redberry.rings.poly.Util
 
ensureOverFiniteField(IPolynomial...) - Static method in class cc.redberry.rings.poly.Util
 
ensureOverZ(IPolynomial...) - Static method in class cc.redberry.rings.poly.Util
 
EqualDegreeFactorization - Class in cc.redberry.rings.poly.univar
Equal-degree factorization of univariate polynomials over finite fields.
equals(Object) - Method in class cc.redberry.rings.bigint.BigDecimal
Compares this BigDecimal with the specified Object for equality.
equals(Object) - Method in class cc.redberry.rings.bigint.BigInteger
Compares this BigInteger with the specified Object for equality.
equals(Object) - Method in class cc.redberry.rings.bigint.MathContext
Compares this MathContext with the specified Object for equality.
equals(Object) - Method in class cc.redberry.rings.FactorDecomposition
 
equals(Object) - Method in class cc.redberry.rings.ImageRing
 
equals(Object) - Method in class cc.redberry.rings.IntegersZp
 
equals(Object) - Method in class cc.redberry.rings.IntegersZp64
 
equals(Object) - Method in class cc.redberry.rings.poly.MultipleFieldExtension
 
equals(Object) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
 
equals(Object) - Method in class cc.redberry.rings.poly.multivar.DegreeVector
 
equals(Object) - Method in class cc.redberry.rings.poly.multivar.GroebnerBases.HilbertSeries
 
equals(Object) - Method in class cc.redberry.rings.poly.multivar.Ideal
 
equals(Object) - Method in class cc.redberry.rings.poly.multivar.Monomial
 
equals(Object) - Method in class cc.redberry.rings.poly.multivar.MonomialOrder.GrevLexWithPermutation
 
equals(Object) - Method in class cc.redberry.rings.poly.multivar.MonomialZp64
 
equals(Object) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
equals(Object) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
equals(Object) - Method in class cc.redberry.rings.Rational
 
equals(Object) - Method in class cc.redberry.rings.Rationals
 
equals(Object) - Method in class cc.redberry.rings.util.ListWrapper
 
EuclidFirstBezoutCoefficient(T, T) - Static method in class cc.redberry.rings.poly.univar.UnivariateGCD
Returns array of [gcd(a,b), s] such that s * a + t * b = gcd(a, b)
EuclidGCD(T, T) - Static method in class cc.redberry.rings.poly.univar.UnivariateGCD
Returns the GCD calculated with Euclidean algorithm.
evaluate(int[], long[]) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Returns a copy of this with values substituted for variables
evaluate(int[], E[]) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Returns a copy of this with values substituted for variables.
evaluate(int, long) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Returns a copy of this with value substituted for variable.
evaluate(int, long) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Returns a copy of this with value substituted for variable
evaluate(int, long...) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Evaluates this polynomial at specified points
evaluate(int, E) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Returns a copy of this with value substituted for variable.
evaluate(int, E...) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Evaluates this polynomial at specified points
evaluate(long) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Evaluates this poly at a given point (via Horner method).
evaluate(long...) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Evaluates this polynomial at specified points
evaluate(long[]) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64.HornerFormZp64
Substitute given values for evaluation variables (for example, if this is in R[x1,x2,x3,x4] and evaluation variables are x2 and x4, the result will be a poly in R[x1,x3]).
evaluate(E) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Evaluates this poly at a given point (via Horner method).
evaluate(E...) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Evaluates this polynomial at specified points
evaluate(E[]) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial.HornerForm
Substitute given values for evaluation variables (for example, if this is in R[x1,x2,x3,x4] and evaluation variables are x2 and x4, the result will be a poly in R[x1,x3]).
evaluateAtRandom(int, RandomGenerator) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Evaluates poly at random point
evaluateAtRandom(int, RandomGenerator) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
evaluateAtRandom(int, RandomGenerator) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
evaluateAtRandomPreservingSkeleton(int, RandomGenerator) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Evaluates poly at random point chosen in such way that the skeleton of evaluated version is the same as of the original poly with respect to all except variable variables
evaluateAtRandomPreservingSkeleton(int, RandomGenerator) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
evaluateAtRandomPreservingSkeleton(int, RandomGenerator) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
evaluateAtRational(long, long) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
Evaluates this poly at a given rational point num/den
evaluateAtZero(int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Substitutes 0 for variable (new instance created).
evaluateAtZero(int[]) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Substitutes 0 for all specified variables (new instance created).
evaluateDenseRecursiveForm(IUnivariatePolynomial, long[]) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Evaluates polynomial given in a dense recursive form at a given points
evaluateDenseRecursiveForm(UnivariatePolynomial, int, E[]) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Evaluates polynomial given in a dense recursive form at a given points
evaluateSparseRecursiveForm(AMultivariatePolynomial, int, E[]) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Evaluates polynomial given in a sparse recursive form at a given points
evaluateSparseRecursiveForm(AMultivariatePolynomial, long[]) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Evaluates polynomial given in a sparse recursive form at a given points
eVariables - Variable in class cc.redberry.rings.io.Coder
map variableName -> Element (if it is a polynomial variable)
EXPONENT - Static variable in class cc.redberry.rings.io.Tokenizer
 
exponents - Variable in class cc.redberry.rings.FactorDecomposition
exponents
exponents - Variable in class cc.redberry.rings.poly.multivar.DegreeVector
exponents
exponents() - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
Returns a set of exponents of non-zero terms
ExtendedEuclidGCD(T, T) - Static method in class cc.redberry.rings.poly.univar.UnivariateGCD
Runs extended Euclidean algorithm to compute [gcd(a,b), s, t] such that s * a + t * b = gcd(a, b).
extendedGCD(E, E) - Method in interface cc.redberry.rings.Ring
Returns array of [gcd(a,b), s, t] such that s * a + t * b = gcd(a, b)
extendedGCD(I, I) - Method in class cc.redberry.rings.ImageRing
 
extendedGCD(mPoly, mPoly) - Method in class cc.redberry.rings.poly.MultipleFieldExtension
 
extendedGCD(Poly, Poly) - Method in class cc.redberry.rings.poly.UnivariateRing
 
ExtendedHalfGCD(T, T) - Static method in class cc.redberry.rings.poly.univar.UnivariateGCD
Runs extended Half-GCD algorithm to compute [gcd(a,b), s, t] such that s * a + t * b = gcd(a, b).
EZGCD(MultivariatePolynomialZp64, MultivariatePolynomialZp64) - Static method in class cc.redberry.rings.poly.multivar.MultivariateGCD
Calculates GCD of two multivariate polynomials over Zp using EZ algorithm

F

F4GB(List<Poly>, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Computes minimized and reduced Groebner basis of a given ideal via Faugère's F4 F4 algorithm.
factor(BigInteger) - Method in class cc.redberry.rings.Integers
 
factor(BigInteger) - Method in class cc.redberry.rings.IntegersZp
 
factor(Rational<E>) - Method in class cc.redberry.rings.Rationals
 
factor(E) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
factor(E) - Method in interface cc.redberry.rings.Ring
Factor specified element
factor(I) - Method in class cc.redberry.rings.ImageRing
 
factor(Poly) - Method in class cc.redberry.rings.poly.MultivariateRing
 
factor(Poly) - Method in class cc.redberry.rings.poly.UnivariateRing
 
Factor(Poly) - Static method in class cc.redberry.rings.poly.multivar.MultivariateFactorization
Factors multivariate polynomial
Factor(Poly) - Static method in class cc.redberry.rings.poly.PolynomialMethods
Factor polynomial.
Factor(Poly) - Static method in class cc.redberry.rings.poly.univar.UnivariateFactorization
Factors univariate poly.
FactorDecomposition<E> - Class in cc.redberry.rings
Factor decomposition of element.
FactorDecomposition(Ring<E>, E, List<E>, TIntArrayList) - Constructor for class cc.redberry.rings.FactorDecomposition
 
factorDenominator() - Method in class cc.redberry.rings.Rational
Factor decomposition of denominator
factorial(int) - Static method in class cc.redberry.rings.bigint.BigIntegerUtil
Factorial of a number
factorial(int) - Method in class cc.redberry.rings.IntegersZp64
Gives value!
factorial(long) - Method in class cc.redberry.rings.ImageRing
 
factorial(long) - Method in class cc.redberry.rings.poly.MultipleFieldExtension
 
factorial(long) - Method in interface cc.redberry.rings.Ring
Gives a product of valueOf(1) * valueOf(2) * .... * valueOf(num)
FactorInGF(Poly) - Static method in class cc.redberry.rings.poly.multivar.MultivariateFactorization
Factors multivariate polynomial over finite field
FactorInGF(Poly) - Static method in class cc.redberry.rings.poly.univar.UnivariateFactorization
Factors polynomial over finite field
FactorInNumberField(MultivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>>) - Static method in class cc.redberry.rings.poly.multivar.MultivariateFactorization
Factors multivariate polynomial over simple number field via Trager's algorithm
FactorInNumberField(UnivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>>) - Static method in class cc.redberry.rings.poly.univar.UnivariateFactorization
Factors polynomial in Q(alpha)[x] via Trager's algorithm
FactorInQ(MultivariatePolynomial<Rational<E>>) - Static method in class cc.redberry.rings.poly.multivar.MultivariateFactorization
Factors multivariate polynomial over Q
FactorInQ(UnivariatePolynomial<Rational<E>>) - Static method in class cc.redberry.rings.poly.univar.UnivariateFactorization
Factors polynomial over Q
FactorInZ(MultivariatePolynomial<BigInteger>) - Static method in class cc.redberry.rings.poly.multivar.MultivariateFactorization
Factors multivariate polynomial over Z
FactorInZ(Poly) - Static method in class cc.redberry.rings.poly.univar.UnivariateFactorization
Factors polynomial in Z[x].
factorNumerator() - Method in class cc.redberry.rings.Rational
Factor decomposition of denominator
factors - Variable in class cc.redberry.rings.FactorDecomposition
factors
factorSquareFree(BigInteger) - Method in class cc.redberry.rings.Integers
 
factorSquareFree(BigInteger) - Method in class cc.redberry.rings.IntegersZp
 
factorSquareFree(Rational<E>) - Method in class cc.redberry.rings.Rationals
 
factorSquareFree(E) - Method in interface cc.redberry.rings.Ring
Square-free factorization of specified element
factorSquareFree(I) - Method in class cc.redberry.rings.ImageRing
 
factorSquareFree(Poly) - Method in class cc.redberry.rings.poly.MultivariateRing
 
factorSquareFree(Poly) - Method in class cc.redberry.rings.poly.UnivariateRing
 
FactorSquareFree(Poly) - Static method in class cc.redberry.rings.poly.PolynomialMethods
Square-free factorization of polynomial.
FactorSquareFreeInGF(T) - Static method in class cc.redberry.rings.poly.univar.UnivariateFactorization
Factors square-free polynomial over finite field
FactorSquareFreeInNumberField(UnivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>>) - Static method in class cc.redberry.rings.poly.univar.UnivariateFactorization
Factors polynomial in Q(alpha)[x] via Trager's algorithm
FactorSquareFreeInZ(PolyZ) - Static method in class cc.redberry.rings.poly.univar.UnivariateFactorization
 
factory() - Method in interface cc.redberry.rings.poly.IPolynomialRing
Factory polynomial
factory() - Method in class cc.redberry.rings.poly.MultipleFieldExtension
 
factory() - Method in class cc.redberry.rings.poly.QuotientRing
 
factory() - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
fastDivisionPreConditioning(Poly) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Prepares rev(divider)^(-1) mod x^i for fast division.
fastDivisionPreConditioningWithLCCorrection(Poly) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Prepares rev(divider)^(-1) mod x^i for fast division.
fermat(BigInteger, long) - Static method in class cc.redberry.rings.primes.BigPrimes
Fermat's factoring algorithm works like trial division, but walks in the opposite direction.
fillZeros(E[]) - Method in interface cc.redberry.rings.Ring
Fills array with zeros
finisher() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial.PolynomialCollector
 
finisher() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial.PolynomialCollector
 
FiniteField<E extends IUnivariatePolynomial<E>> - Class in cc.redberry.rings.poly
Galois field GF(p, q).
FiniteField(E) - Constructor for class cc.redberry.rings.poly.FiniteField
Constructs finite field from the specified irreducible polynomial.
finiteFieldIrreducibleBenOr(Poly) - Static method in class cc.redberry.rings.poly.univar.IrreduciblePolynomials
Tests whether poly is irreducible over the finite field
finiteFieldIrreducibleQ(Poly) - Static method in class cc.redberry.rings.poly.univar.IrreduciblePolynomials
Tests whether poly is irreducible over the finite field
finiteFieldIrreducibleViaModularComposition(Poly) - Static method in class cc.redberry.rings.poly.univar.IrreduciblePolynomials
Tests whether poly is irreducible over the finite field
first() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
 
first() - Method in class cc.redberry.rings.poly.multivar.MonomialSet
First monomial in this set
firstBezoutCoefficient(E, E) - Method in interface cc.redberry.rings.Ring
Returns array of [gcd(a,b), s] such that s * a + t * b = gcd(a, b)
firstBezoutCoefficient(Poly, Poly) - Method in class cc.redberry.rings.poly.UnivariateRing
 
firstIndexOf(int, int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
firstIndexOf(Object, Object[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
firstNonZeroCoefficientPosition() - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
Returns position of the first non-zero coefficient, that is common monomial exponent (e.g.
firstNonZeroCoefficientPosition() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
fits31bitWord(long) - Static method in class cc.redberry.rings.poly.MachineArithmetic
Returns true if val fits into 32-bit machine word (unsigned) and false otherwise
fits32bitWord(long) - Static method in class cc.redberry.rings.poly.MachineArithmetic
Returns true if val fits into 32-bit machine word (unsigned) and false otherwise
FIVE - Static variable in class cc.redberry.rings.bigint.BigInteger
The BigInteger constant five.
flatten(int[][]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
flipBit(int) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is equivalent to this BigInteger with the designated bit flipped.
floatValue() - Method in class cc.redberry.rings.bigint.BigDecimal
Converts this BigDecimal to a float.
floatValue() - Method in class cc.redberry.rings.bigint.BigInteger
Converts this BigInteger to a float.
FLOOR - cc.redberry.rings.bigint.RoundingMode
Rounding mode to round towards negative infinity.
forceSetDegreeVector(int[], int) - Method in class cc.redberry.rings.poly.multivar.AMonomial
Sets the degree vector
forceSetDegreeVector(int[], int) - Method in class cc.redberry.rings.poly.multivar.Monomial
 
forceSetDegreeVector(int[], int) - Method in class cc.redberry.rings.poly.multivar.MonomialZp64
 
forEach(Consumer<? super Poly>) - Method in class cc.redberry.rings.util.ListWrapper
 
FOUR - Static variable in class cc.redberry.rings.bigint.BigInteger
The BigInteger constant four.
Frac(Ring<E>) - Static method in class cc.redberry.rings.Rings
Ring of rational functions over specified ring
fromDenseRecursiveForm(IUnivariatePolynomial, int, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Converts poly from a recursive univariate representation.
fromDenseRecursiveForm(IUnivariatePolynomial, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Converts poly from a recursive univariate representation.
fromDenseRecursiveForm(UnivariatePolynomial, int, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Converts poly from a recursive univariate representation.
fromSparseRecursiveForm(AMultivariatePolynomial, int, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Converts poly from a recursive univariate representation.
fromSparseRecursiveForm(AMultivariatePolynomial, int, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Converts poly from a recursive univariate representation.
fromSparseRecursiveForm(AMultivariatePolynomial, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Converts poly from a sparse recursive univariate representation.
fromUnivariate(IPolynomialRing<UnivariatePolynomial<Poly>>, int) - Static method in class cc.redberry.rings.poly.multivar.MultivariateConversions
Given poly in R[variables][other_variables] converts it to poly in R[x1,x2,...,xN]
fromUnivariate(UnivariatePolynomial<Poly>, int) - Static method in class cc.redberry.rings.poly.multivar.MultivariateConversions
Given poly in R[variables][other_variables] converts it to poly in R[x1,x2,...,xN]

G

GaussianIntegers - Static variable in class cc.redberry.rings.Rings
Ring of Gaussian integers (integer complex numbers).
GaussianNumbers(Ring<E>) - Static method in class cc.redberry.rings.Rings
Gaussian numbers for a given ring (that is ring adjoined with imaginary unit)
GaussianRationals - Static variable in class cc.redberry.rings.Rings
Field of Gaussian rationals (rational complex numbers).
gcd() - Method in class cc.redberry.rings.poly.univar.UnivariateResultants.APolynomialRemainderSequence
The last element in PRS, that is the GCD
gcd(int...) - Static method in class cc.redberry.rings.poly.MachineArithmetic
Returns the greatest common an array of integers
gcd(int[], int, int) - Static method in class cc.redberry.rings.poly.MachineArithmetic
Returns the greatest common an array of integers
gcd(int, int) - Static method in class cc.redberry.rings.poly.MachineArithmetic
Computes the greatest common divisor of the absolute value of two numbers, using a modified version of the "binary gcd" method.
gcd(long...) - Static method in class cc.redberry.rings.poly.MachineArithmetic
Returns the greatest common an array of longs
gcd(long[], int, int) - Static method in class cc.redberry.rings.poly.MachineArithmetic
Returns the greatest common an array of longs
gcd(long, long) - Static method in class cc.redberry.rings.poly.MachineArithmetic
Returns the greatest common divisor of two longs.
gcd(BigInteger) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is the greatest common divisor of abs(this) and abs(val).
gcd(BigInteger[], int, int) - Static method in class cc.redberry.rings.bigint.BigIntegerUtil
Returns the greatest common an array of longs
gcd(BigInteger, BigInteger) - Static method in class cc.redberry.rings.bigint.BigIntegerUtil
 
gcd(BigInteger, BigInteger) - Method in class cc.redberry.rings.Integers
 
gcd(Rational<E>, Rational<E>) - Method in class cc.redberry.rings.Rationals
 
gcd(E...) - Method in interface cc.redberry.rings.Ring
Returns greatest common divisor of specified elements
gcd(E, E) - Method in class cc.redberry.rings.poly.AlgebraicNumberField
 
gcd(E, E) - Method in class cc.redberry.rings.poly.FiniteField
 
gcd(E, E) - Method in interface cc.redberry.rings.Ring
Returns the greatest common divisor of two elements
gcd(I...) - Method in class cc.redberry.rings.ImageRing
 
gcd(I, I) - Method in class cc.redberry.rings.ImageRing
 
gcd(Iterable<E>) - Method in interface cc.redberry.rings.Ring
Returns greatest common divisor of specified elements
gcd(Iterable<I>) - Method in class cc.redberry.rings.ImageRing
 
gcd(Iterable<mPoly>) - Method in class cc.redberry.rings.poly.MultipleFieldExtension
 
gcd(Iterable<Poly>) - Method in class cc.redberry.rings.poly.MultivariateRing
 
gcd(mPoly...) - Method in class cc.redberry.rings.poly.MultipleFieldExtension
 
gcd(mPoly, mPoly) - Method in class cc.redberry.rings.poly.MultipleFieldExtension
 
gcd(Poly[]) - Method in class cc.redberry.rings.poly.MultivariateRing
 
gcd(Poly, Poly) - Method in class cc.redberry.rings.poly.MultivariateRing
 
gcd(Poly, Poly) - Method in class cc.redberry.rings.poly.UnivariateRing
 
gcdExtended(long, long) - Static method in class cc.redberry.rings.poly.MachineArithmetic
Runs extended Euclidean algorithm to compute [gcd(a,b), x, y] such that x * a + y * b = gcd(a, b)
generator() - Method in class cc.redberry.rings.poly.SimpleFieldExtension
Returns the generator element α of this field extension F(α)
get(int) - Method in class cc.redberry.rings.FactorDecomposition
Returns i-th factor
get(int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Returns i-th coefficient of this poly
get(int) - Method in class cc.redberry.rings.util.ListWrapper
 
getAsPoly(int) - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
Returns i-th coefficient of this as a constant polynomial
getAsPoly(int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
getBasisGenerator(int) - Method in class cc.redberry.rings.poly.multivar.Ideal
Returns i-th element of Groebner basis
getBinding(Element) - Method in interface cc.redberry.rings.io.IStringifier
Get string binding of corresponding element
getBinding(Element, String) - Method in interface cc.redberry.rings.io.IStringifier
Get string binding of corresponding element
getBindings() - Method in class cc.redberry.rings.io.Coder
 
getBindings() - Method in interface cc.redberry.rings.io.IStringifier
Map of bindings
getBindings() - Method in class cc.redberry.rings.io.IStringifier.SimpleStringifier
 
getDataReferenceUnsafe() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
internal API
getExponent(int) - Method in class cc.redberry.rings.FactorDecomposition
Exponent of i-th factor
getGeneratorMinimalPoly(int) - Method in class cc.redberry.rings.poly.MultipleFieldExtension
Returns minimal polynomial corresponding to i-th generator.
getGeneratorRep(int) - Method in class cc.redberry.rings.poly.MultipleFieldExtension
Returns representation of i-th generator as element of simple field extension generated by primitive element MultipleFieldExtension.getPrimitiveElement()
getGeneratorReps() - Method in class cc.redberry.rings.poly.MultipleFieldExtension
Returns representation of generators as elements of simple field extension generated by primitive element MultipleFieldExtension.getPrimitiveElement()
getGroebnerBasis() - Method in class cc.redberry.rings.poly.multivar.Ideal
Groebner basis of this ideal
getHornerForm(int[]) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Gives data structure for fast Horner-like sparse evaluation of this multivariate polynomial
getHornerForm(int[]) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Gives data structure for fast Horner-like sparse evaluation of this multivariate polynomial
getInterpolatingPolynomial() - Method in class cc.redberry.rings.poly.multivar.MultivariateInterpolation.Interpolation
Returns resulting interpolating polynomial
getInterpolatingPolynomial() - Method in class cc.redberry.rings.poly.multivar.MultivariateInterpolation.InterpolationZp64
Returns resulting interpolating polynomial
getInterpolatingPolynomial() - Method in class cc.redberry.rings.poly.univar.UnivariateInterpolation.Interpolation
Returns resulting interpolating polynomial
getInterpolatingPolynomial() - Method in class cc.redberry.rings.poly.univar.UnivariateInterpolation.InterpolationZp64
Returns resulting interpolating polynomial
getInverse(int) - Method in class cc.redberry.rings.poly.univar.UnivariateDivision.InverseModMonomial
Returns poly^(-1) mod x^xDegree .
getLimit() - Method in class cc.redberry.rings.primes.SieveOfAtkin
 
getLimitAsBigInteger() - Method in class cc.redberry.rings.primes.SieveOfAtkin
 
getLowestSetBit() - Method in class cc.redberry.rings.bigint.BigInteger
Returns the index of the rightmost (lowest-order) one bit in this BigInteger (the number of zero bits to the right of the rightmost one bit).
getMinimalPolynomial() - Method in class cc.redberry.rings.poly.SimpleFieldExtension
Returns the minimal polynomial of the generator (that is the "modulo" polynomial p(x) of this field viewed as quotient field F[x]/<p(x)>)
getMinimalPolynomialRef() - Method in class cc.redberry.rings.poly.SimpleFieldExtension
INTERNAL
getMonomialOrder() - Method in class cc.redberry.rings.poly.multivar.Ideal
The monomial order used for Groebner basis
getNegativeOne() - Method in class cc.redberry.rings.Integers
 
getNegativeOne() - Method in class cc.redberry.rings.Rationals
 
getNegativeOne() - Method in interface cc.redberry.rings.Ring
Returns negative unit element of this ring (minus one)
getOne() - Method in class cc.redberry.rings.ImageRing
 
getOne() - Method in class cc.redberry.rings.poly.MultipleFieldExtension
 
getOne() - Method in class cc.redberry.rings.poly.QuotientRing
 
getOne() - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
getOne() - Method in class cc.redberry.rings.Rationals
 
getOne() - Method in interface cc.redberry.rings.Ring
Returns unit element of this ring (one)
getOriginalGenerators() - Method in class cc.redberry.rings.poly.multivar.Ideal
Returns the list of original generators
getPoints() - Method in class cc.redberry.rings.poly.multivar.MultivariateInterpolation.Interpolation
Returns the list of evaluation points used in interpolation
getPoints() - Method in class cc.redberry.rings.poly.multivar.MultivariateInterpolation.InterpolationZp64
Returns the list of evaluation points used in interpolation
getPoints() - Method in class cc.redberry.rings.poly.univar.UnivariateInterpolation.Interpolation
Returns the list of evaluation points used in interpolation
getPoints() - Method in class cc.redberry.rings.poly.univar.UnivariateInterpolation.InterpolationZp64
Returns the list of evaluation points used in interpolation
getPrecision() - Method in class cc.redberry.rings.bigint.MathContext
Returns the precision setting.
getPrimitiveElement() - Method in class cc.redberry.rings.poly.MultipleFieldExtension
Returns the primitive element of this multiple field extension
getRange(int, int) - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
Creates polynomial formed from the coefficients of this starting from from (inclusive) to to (exclusive)
getRange(int, int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
getRange(int, int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
getRange(int, int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
getRoundingMode() - Method in class cc.redberry.rings.bigint.MathContext
Returns the roundingMode setting.
getSimpleExtension() - Method in class cc.redberry.rings.poly.MultipleFieldExtension
Returns the isomorphic simple field extension generated by MultipleFieldExtension.getPrimitiveElement()
getSkeleton() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns skeleton of this poly
getSkeleton(int...) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns skeleton of this poly with respect to specified variables
getSkeletonDrop(int...) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns skeleton of this poly with respect to specified variables
getSkeletonExcept(int...) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns skeleton of this poly with respect to all except specified variables
getSortedDistinct(int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sort array & return array with removed repetitive values.
getSortedDistinct(long[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sort array & return array with removed repetitive values.
getSortedDistinct(BigInteger[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sort array & return array with removed repetitive values.
getSubExtension(int) - Method in class cc.redberry.rings.poly.MultipleFieldExtension
Returns the i-th extension from the tower
getSubresultants() - Method in class cc.redberry.rings.poly.univar.UnivariateResultants.PolynomialRemainderSequence
Gives a list of scalar subresultant where i-th list element is i-th subresultant.
getSubresultants() - Method in class cc.redberry.rings.poly.univar.UnivariateResultants.PolynomialRemainderSequenceZp64
Gives a list of scalar subresultant where i-th list element is i-th subresultant.
getUnitTerm(int) - Method in interface cc.redberry.rings.poly.multivar.IMonomialAlgebra
creates a unit term
getUnitTerm(int) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebra
 
getUnitTerm(int) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebraZp64
 
getUnivariateFactory() - Method in class cc.redberry.rings.poly.MultipleFieldExtension
 
getValues() - Method in class cc.redberry.rings.poly.multivar.MultivariateInterpolation.Interpolation
Returns the list of polynomial values at interpolation points
getValues() - Method in class cc.redberry.rings.poly.multivar.MultivariateInterpolation.InterpolationZp64
Returns the list of polynomial values at interpolation points
getValues() - Method in class cc.redberry.rings.poly.univar.UnivariateInterpolation.Interpolation
Returns the list of polynomial values at interpolation points
getValues() - Method in class cc.redberry.rings.poly.univar.UnivariateInterpolation.InterpolationZp64
Returns the list of polynomial values at interpolation points
getVariable() - Method in class cc.redberry.rings.poly.multivar.MultivariateInterpolation.Interpolation
Returns variable used in the interpolation
getVariable() - Method in class cc.redberry.rings.poly.multivar.MultivariateInterpolation.InterpolationZp64
Returns variable used in the interpolation
getZero() - Method in class cc.redberry.rings.ImageRing
 
getZero() - Method in class cc.redberry.rings.poly.MultipleFieldExtension
 
getZero() - Method in class cc.redberry.rings.poly.QuotientRing
 
getZero() - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
getZero() - Method in class cc.redberry.rings.Rationals
 
getZero() - Method in interface cc.redberry.rings.Ring
Returns zero element of this ring
getZeroTerm(int) - Method in interface cc.redberry.rings.poly.multivar.IMonomialAlgebra
creates a zero term
getZeroTerm(int) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebra
 
getZeroTerm(int) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebraZp64
 
GF(long, int) - Static method in class cc.redberry.rings.Rings
Galois field with the cardinality prime ^ exponent (with prime < 2^63).
GF(BigInteger, int) - Static method in class cc.redberry.rings.Rings
Galois field with the cardinality prime ^ exponent for arbitrary large prime
GF(Poly) - Static method in class cc.redberry.rings.Rings
Galois field with the specified minimal polynomial.
GF17p5 - Static variable in class cc.redberry.rings.poly.FiniteField
GF(17^5)
GF27 - Static variable in class cc.redberry.rings.poly.FiniteField
GF(3^3)
GREVLEX - Static variable in class cc.redberry.rings.poly.multivar.MonomialOrder
Graded reverse lexicographic monomial order
GRLEX - Static variable in class cc.redberry.rings.poly.multivar.MonomialOrder
Graded lexicographic monomial order.
GroebnerBases - Class in cc.redberry.rings.poly.multivar
Groebner bases.
GroebnerBases.HilbertSeries - Class in cc.redberry.rings.poly.multivar
Hilbert-Poincare series HPS(t) = P(t) / (1 - t)^m
GroebnerBases.MinimizationStrategy - Interface in cc.redberry.rings.poly.multivar
Strategy used to reduce and minimize basis in the intermediate steps of Buchberger algorithm
GroebnerBases.SyzygyPair<Term extends AMonomial<Term>,​Poly extends cc.redberry.rings.poly.multivar.MonomialSetView<Term>> - Class in cc.redberry.rings.poly.multivar
Abstract critical pair: used with different Poly type for Buchberger and F4 algorithms
GroebnerBasesData - Class in cc.redberry.rings.poly.multivar
Collection of special ideals
GroebnerBasesData() - Constructor for class cc.redberry.rings.poly.multivar.GroebnerBasesData
 
GroebnerBasis(List<Poly>, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Computes Groebner basis (minimized and reduced) of a given ideal represented by a list of generators.
GroebnerBasisInGF(List<Poly>, Comparator<DegreeVector>, GroebnerBases.HilbertSeries) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Computes Groebner basis (minimized and reduced) of a given ideal over finite filed represented by a list of generators.
GroebnerBasisInQ(List<MultivariatePolynomial<Rational<BigInteger>>>, Comparator<DegreeVector>, GroebnerBases.HilbertSeries, boolean) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Computes Groebner basis (minimized and reduced) of a given ideal over Q represented by a list of generators.
GroebnerBasisInZ(List<MultivariatePolynomial<BigInteger>>, Comparator<DegreeVector>, GroebnerBases.HilbertSeries, boolean) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Computes Groebner basis (minimized and reduced) of a given ideal over Z represented by a list of generators.
GroebnerBasisRegardingGrevLexWithPermutation(List<Poly>, GroebnerBases.GroebnerAlgorithm<Term, Poly>, MonomialOrder.GrevLexWithPermutation) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
computes Groebner basis in GREVLEX with shuffled variables
GroebnerBasisWithOptimizedGradedOrder(List<Poly>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
computes Groebner basis in GREVLEX with shuffled variables
GroebnerBasisWithOptimizedGradedOrder(List<Poly>, GroebnerBases.GroebnerAlgorithm<Term, Poly>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
computes Groebner basis in GREVLEX with shuffled variables
GroebnerMethods - Class in cc.redberry.rings.poly.multivar
Utility methods based on Groebner bases

H

HALF_DOWN - cc.redberry.rings.bigint.RoundingMode
Rounding mode to round towards "nearest neighbor" unless both neighbors are equidistant, in which case round down.
HALF_EVEN - cc.redberry.rings.bigint.RoundingMode
Rounding mode to round towards the "nearest neighbor" unless both neighbors are equidistant, in which case, round towards the even neighbor.
HALF_UP - cc.redberry.rings.bigint.RoundingMode
Rounding mode to round towards "nearest neighbor" unless both neighbors are equidistant, in which case round up.
HalfGCD(T, T) - Static method in class cc.redberry.rings.poly.univar.UnivariateGCD
Half-GCD algorithm.
HASH_COMPARATOR - Static variable in class cc.redberry.rings.util.ArraysUtil
 
hashCode() - Method in class cc.redberry.rings.bigint.BigDecimal
Returns the hash code for this BigDecimal.
hashCode() - Method in class cc.redberry.rings.bigint.BigInteger
Returns the hash code for this BigInteger.
hashCode() - Method in class cc.redberry.rings.bigint.MathContext
Returns the hash code for this MathContext.
hashCode() - Method in class cc.redberry.rings.FactorDecomposition
 
hashCode() - Method in class cc.redberry.rings.ImageRing
 
hashCode() - Method in class cc.redberry.rings.IntegersZp
 
hashCode() - Method in class cc.redberry.rings.IntegersZp64
 
hashCode() - Method in class cc.redberry.rings.poly.MultipleFieldExtension
 
hashCode() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
 
hashCode() - Method in class cc.redberry.rings.poly.multivar.DegreeVector
 
hashCode() - Method in class cc.redberry.rings.poly.multivar.GroebnerBases.HilbertSeries
 
hashCode() - Method in class cc.redberry.rings.poly.multivar.Ideal
 
hashCode() - Method in class cc.redberry.rings.poly.multivar.Monomial
 
hashCode() - Method in class cc.redberry.rings.poly.multivar.MonomialOrder.GrevLexWithPermutation
 
hashCode() - Method in class cc.redberry.rings.poly.multivar.MonomialSet
 
hashCode() - Method in class cc.redberry.rings.poly.multivar.MonomialZp64
 
hashCode() - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
hashCode() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
hashCode() - Method in class cc.redberry.rings.Rational
 
hashCode() - Method in class cc.redberry.rings.Rationals
 
hashCode() - Method in class cc.redberry.rings.util.ListWrapper
 
hasMulDivPlusMinus(int, String) - Static method in interface cc.redberry.rings.io.IStringifier
 
hasNext() - Method in interface cc.redberry.rings.io.Tokenizer.CharacterStream
next char available in this stream
hasNext() - Method in class cc.redberry.rings.poly.multivar.PairedIterator
 
hasPlusMinus(int, String) - Static method in interface cc.redberry.rings.io.IStringifier
 
haveSameCoefficients(Monomial<E>, Monomial<E>) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebra
 
haveSameCoefficients(MonomialZp64, MonomialZp64) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebraZp64
 
haveSameCoefficients(Term, Term) - Method in interface cc.redberry.rings.poly.multivar.IMonomialAlgebra
whether two terms have the same coefficients
HenselLifting - Class in cc.redberry.rings.poly.multivar
Hensel lifting.
HenselLifting - Class in cc.redberry.rings.poly.univar
Methods for univariate Hensel lifting.
HenselLifting.bLinearLift - Class in cc.redberry.rings.poly.univar
Linear Hensel lift for BigIntegers arithmetics.
HenselLifting.bQuadraticLift - Class in cc.redberry.rings.poly.univar
Quadratic Hensel lift for BigIntegers arithmetics.
HenselLifting.LiftableQuintet<PolyZp extends IUnivariatePolynomial<PolyZp>> - Interface in cc.redberry.rings.poly.univar
Liftable quintet.
HenselLifting.lLinearLift - Class in cc.redberry.rings.poly.univar
Linear Hensel lift for machine word arithmetics.
HenselLifting.lQuadraticLift - Class in cc.redberry.rings.poly.univar
Quadratic Hensel lift for machine word arithmetics.
HilbertConvertBasis(List<Poly>, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Converts Groebner basis to a given monomial order using Hilbert-driven algorithm
HilbertGB(List<Poly>, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Hilbert-driven algorithm for Groebner basis computation
HilbertGB(List<Poly>, Comparator<DegreeVector>, GroebnerBases.GroebnerAlgorithm<Term, Poly>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Hilbert-driven algorithm for Groebner basis computation.
HilbertGB(List<Poly>, Comparator<DegreeVector>, GroebnerBases.HilbertSeries) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Hilbert-driven algorithm for Groebner basis computation
hilbertPolynomial() - Method in class cc.redberry.rings.poly.multivar.GroebnerBases.HilbertSeries
Hilbert polynomial
hilbertPolynomialZ() - Method in class cc.redberry.rings.poly.multivar.GroebnerBases.HilbertSeries
Integral Hilbert polynomial (i.e.
hilbertSeries() - Method in class cc.redberry.rings.poly.multivar.Ideal
Hilbert-Poincare series of this ideal
HilbertSeries(List<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Computes Hilbert-Poincare series of monomial ideal
HilbertSeriesOfLeadingTermsSet(List<? extends AMultivariatePolynomial>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Computes Hilbert-Poincare series of specified ideal given by its Groebner basis
homogenize(int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Homogenize poly by adding new (homogenizing) variable

I

ideal - Variable in class cc.redberry.rings.poly.QuotientRing
the ideal
Ideal<Term extends AMonomial<Term>,​Poly extends AMultivariatePolynomial<Term,​Poly>> - Class in cc.redberry.rings.poly.multivar
Ideal represented by its Groebner basis.
identity() - Static method in interface cc.redberry.rings.util.SerializableFunction
 
image(F) - Method in class cc.redberry.rings.ImageRing
 
image(F[]) - Method in class cc.redberry.rings.ImageRing
 
imageFunc - Variable in class cc.redberry.rings.ImageRing
 
ImageRing<F,​I> - Class in cc.redberry.rings
A ring obtained via isomorphism specified by ImageRing.image(Object) and ImageRing.inverse(Object) functions.
ImageRing(Ring<F>, Function<I, F>, Function<F, I>) - Constructor for class cc.redberry.rings.ImageRing
 
IMonomialAlgebra<Term extends AMonomial<Term>> - Interface in cc.redberry.rings.poly.multivar
Algebraic operations (multiplication, division) and utility methods for monomials.
IMonomialAlgebra.MonomialAlgebra<E> - Class in cc.redberry.rings.poly.multivar
Generic term algebra
IMonomialAlgebra.MonomialAlgebraZp64 - Class in cc.redberry.rings.poly.multivar
Term algebra for terms over Zp
Inconsistent - cc.redberry.rings.linear.LinearSolver.SystemInfo
Inconsistent system
increment() - Method in class cc.redberry.rings.bigint.BigInteger
 
increment() - Method in interface cc.redberry.rings.poly.IPolynomial
Adds 1 to this
increment() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
increment() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
increment() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
increment(E) - Method in interface cc.redberry.rings.Ring
Returns element + 1
increment(I) - Method in class cc.redberry.rings.ImageRing
 
indexInCurrentString() - Method in interface cc.redberry.rings.io.Tokenizer.CharacterStream
index of char in string
indexOf(Object) - Method in class cc.redberry.rings.util.ListWrapper
 
indexOfMax(int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
initialDenominatorExponent - Variable in class cc.redberry.rings.poly.multivar.GroebnerBases.HilbertSeries
Initial denominator exponent (numerator and denominator may have nontrivial GCD)
initialDomain - Variable in class cc.redberry.rings.poly.univar.HenselLifting.bLinearLift
The initial modulus (less than 64-bit)
initialModulus - Variable in class cc.redberry.rings.poly.univar.HenselLifting.lLinearLift
The initial modulus
initialNumerator - Variable in class cc.redberry.rings.poly.multivar.GroebnerBases.HilbertSeries
Initial numerator (numerator and denominator may have nontrivial GCD)
insert(int) - Method in class cc.redberry.rings.poly.multivar.AMonomial
Inserts new variable (with zero exponent)
insert(int[], int, int) - Static method in class cc.redberry.rings.util.ArraysUtil
 
insert(int[], int, int, int) - Static method in class cc.redberry.rings.util.ArraysUtil
 
insert(int, int) - Method in class cc.redberry.rings.poly.multivar.AMonomial
Inserts new variables (with zero exponent)
insert(long[], int, long) - Static method in class cc.redberry.rings.util.ArraysUtil
 
insert(T[], int, T) - Static method in class cc.redberry.rings.util.ArraysUtil
 
insertionSort(int[], int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified array of ints into ascending order using insertion sort algorithm and simultaneously permutes the coSort ints array in the same way as the target array.
insertionSort(int[], int, int, int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified array of ints into ascending order using insertion sort algorithm and simultaneously permutes the coSort ints array in the same way as the target array.
insertionSort(int[], int, int, long[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified array of ints into ascending order using insertion sort algorithm and simultaneously permutes the coSort ints array in the same way as the target array.
insertionSort(int[], long[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified array of ints into ascending order using insertion sort algorithm and simultaneously permutes the coSort longs array in the same way as the specified target array.
insertionSort(T[], int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified target array of objects into ascending order, according to the natural ordering of its elements using insertion sort algorithm and simultaneously permutes the coSort objects array in the same way then specified target array.
insertionSort(T[], int, int, int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified target array of objects into ascending order, according to the natural ordering of its elements using insertion sort algorithm and simultaneously permutes the coSort objects array in the same way then specified target array.
insertionSort(T[], int, int, Object[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified target array of objects into ascending order, according to the natural ordering of its elements using insertion sort algorithm and simultaneously permutes the coSort objects array in the same way then specified target array.
insertionSort(T[], Object[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified target array of objects into ascending order, according to the natural ordering of its elements using insertion sort algorithm and simultaneously permutes the coSort objects array in the same way then specified target array.
insertVariable(int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Makes a copy of this by inserting new variable (the indexes will be shifted)
insertVariable(int, int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Makes a copy of this by inserting new variables (the indexes will be shifted)
INT_MAX_VALUE - Static variable in class cc.redberry.rings.bigint.BigInteger
The BigInteger constant Int.MAX_VALUE.
int2byte(int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
int2short(int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
IntComparator - Interface in cc.redberry.rings.util
 
Integers - Class in cc.redberry.rings
The ring of integers (Z).
Integers - Static variable in class cc.redberry.rings.Integers
The ring of integers (Z)
IntegersZp - Class in cc.redberry.rings
Ring of integers modulo some modulus.
IntegersZp(long) - Constructor for class cc.redberry.rings.IntegersZp
Creates Zp ring for specified modulus.
IntegersZp(BigInteger) - Constructor for class cc.redberry.rings.IntegersZp
Creates Zp ring for specified modulus.
IntegersZp64 - Class in cc.redberry.rings
Zp ring over machine numbers which provides fast modular arithmetic.
IntegersZp64(long) - Constructor for class cc.redberry.rings.IntegersZp64
Creates the ring.
IntegersZp64(long, FastDivision.Magic, FastDivision.Magic, boolean) - Constructor for class cc.redberry.rings.IntegersZp64
 
integralPart() - Method in class cc.redberry.rings.poly.multivar.GroebnerBases.HilbertSeries
Integral part I(t) of HPS(t): HPS(t) = I(t) + Q(t)/(1-t)^m
interpolateLagrange(long, long[], long[]) - Static method in class cc.redberry.rings.poly.univar.UnivariateInterpolation
Constructs an interpolating polynomial which values at points[i] are exactly values[i].
interpolateLagrange(Ring<E>, E[], E[]) - Static method in class cc.redberry.rings.poly.univar.UnivariateInterpolation
Constructs an interpolating polynomial which values at points[i] are exactly values[i].
interpolateNewton(int, E[], MultivariatePolynomial<E>[]) - Static method in class cc.redberry.rings.poly.multivar.MultivariateInterpolation
Constructs an interpolating polynomial which values at points[i] are exactly values[i].
interpolateNewton(long, long[], long[]) - Static method in class cc.redberry.rings.poly.univar.UnivariateInterpolation
Constructs an interpolating polynomial which values at points[i] are exactly values[i].
interpolateNewton(IntegersZp64, long[], long[]) - Static method in class cc.redberry.rings.poly.univar.UnivariateInterpolation
Constructs an interpolating polynomial which values at points[i] are exactly values[i].
interpolateNewton(Ring<E>, E[], E[]) - Static method in class cc.redberry.rings.poly.univar.UnivariateInterpolation
Constructs an interpolating polynomial which values at points[i] are exactly values[i].
Interpolation(int, IPolynomialRing<MultivariatePolynomial<E>>) - Constructor for class cc.redberry.rings.poly.multivar.MultivariateInterpolation.Interpolation
Start new interpolation
Interpolation(int, MultivariatePolynomial<E>) - Constructor for class cc.redberry.rings.poly.multivar.MultivariateInterpolation.Interpolation
Start new interpolation
Interpolation(int, E, MultivariatePolynomial<E>) - Constructor for class cc.redberry.rings.poly.multivar.MultivariateInterpolation.Interpolation
Start new interpolation with interpolation[variable = point] = value
Interpolation(Ring<E>) - Constructor for class cc.redberry.rings.poly.univar.UnivariateInterpolation.Interpolation
Start new interpolation with interpolation[point] = value
InterpolationZp64(int, long, MultivariatePolynomialZp64) - Constructor for class cc.redberry.rings.poly.multivar.MultivariateInterpolation.InterpolationZp64
Start new interpolation with interpolation[variable = point] = value
InterpolationZp64(int, IPolynomialRing<MultivariatePolynomialZp64>) - Constructor for class cc.redberry.rings.poly.multivar.MultivariateInterpolation.InterpolationZp64
Start new interpolation
InterpolationZp64(int, MultivariatePolynomialZp64) - Constructor for class cc.redberry.rings.poly.multivar.MultivariateInterpolation.InterpolationZp64
Start new interpolation
InterpolationZp64(IntegersZp64) - Constructor for class cc.redberry.rings.poly.univar.UnivariateInterpolation.InterpolationZp64
Start new interpolation with interpolation[point] = value
intersection(Ideal<Term, Poly>) - Method in class cc.redberry.rings.poly.multivar.Ideal
Returns the intersection of this and oth
intSetDifference(int[], int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Return the set difference B - A for int sets A and B.
Sets A and B must be represented as two sorted int arrays.
Repetitive values in A or B not allowed.
intSetUnion(int[], int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Return the union B + A for integer sets A and B.
Sets A and B must be represented as two sorted integer arrays.
Repetitive values in A or B not allowed.
intValue() - Method in class cc.redberry.rings.bigint.BigDecimal
Converts this BigDecimal to an int.
intValue() - Method in class cc.redberry.rings.bigint.BigInteger
Converts this BigInteger to an int.
intValueExact() - Method in class cc.redberry.rings.bigint.BigDecimal
Converts this BigDecimal to an int, checking for lost information.
intValueExact() - Method in class cc.redberry.rings.bigint.BigInteger
Converts this BigInteger to an int, checking for lost information.
inverse(I) - Method in class cc.redberry.rings.ImageRing
 
inverse(I[]) - Method in class cc.redberry.rings.ImageRing
 
inverseFunc - Variable in class cc.redberry.rings.ImageRing
 
IParser<Element> - Interface in cc.redberry.rings.io
Defines IParser.parse(String) method
IPolynomial<Poly extends IPolynomial<Poly>> - Interface in cc.redberry.rings.poly
Parent interface for all polynomials.
IPolynomialRing<Poly extends IPolynomial<Poly>> - Interface in cc.redberry.rings.poly
Polynomial ring.
IrreduciblePolynomials - Class in cc.redberry.rings.poly.univar
Irreducibility tests and generators for random irreducible polynomials.
irreducibleQ(Poly) - Static method in class cc.redberry.rings.poly.PolynomialMethods
Returns whether specified polynomial is irreducible
irreducibleQ(Poly) - Static method in class cc.redberry.rings.poly.univar.IrreduciblePolynomials
Tests whether poly is irreducible
isConstant() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns true if this polynomial has only constant term
isConstant() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
isConstant() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
isConstant() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
isConstant(Term) - Method in interface cc.redberry.rings.poly.multivar.IMonomialAlgebra
Whether term is constant
isEffectiveUnivariate() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns whether this poly is effectively univariate (not more than one variable is non-unit)
isEmpty() - Method in class cc.redberry.rings.poly.multivar.Ideal
Whether this ideal is empty
isEmpty() - Method in class cc.redberry.rings.util.ListWrapper
 
isEuclideanRing() - Method in class cc.redberry.rings.ImageRing
 
isEuclideanRing() - Method in class cc.redberry.rings.Integers
 
isEuclideanRing() - Method in class cc.redberry.rings.IntegersZp
 
isEuclideanRing() - Method in class cc.redberry.rings.poly.QuotientRing
 
isEuclideanRing() - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
isEuclideanRing() - Method in class cc.redberry.rings.Rationals
 
isEuclideanRing() - Method in interface cc.redberry.rings.Ring
Returns whether this ring is a Euclidean ring
isField() - Method in class cc.redberry.rings.ImageRing
 
isField() - Method in class cc.redberry.rings.Integers
 
isField() - Method in class cc.redberry.rings.IntegersZp
 
isField() - Method in class cc.redberry.rings.poly.AlgebraicNumberField
 
isField() - Method in class cc.redberry.rings.poly.FiniteField
 
isField() - Method in class cc.redberry.rings.poly.QuotientRing
 
isField() - Method in class cc.redberry.rings.Rationals
 
isField() - Method in interface cc.redberry.rings.Ring
Returns whether this ring is a field
isFinite() - Method in interface cc.redberry.rings.Ring
Returns whether this ring is finite
isFiniteField() - Method in interface cc.redberry.rings.Ring
Returns whether this ring is a finite field
isGradedOrder(Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.MonomialOrder
whether monomial order is graded
isGroebnerBasis(List<Poly>, List<Poly>, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Check whether specified generators form Groebner basis of given ideal
isHomogeneous() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns whether all terms have the same total degree
isHomogeneous() - Method in class cc.redberry.rings.poly.multivar.Ideal
Whether this ideal is homogeneous
isHomogeneousIdeal(List<? extends AMultivariatePolynomial>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Check whether ideal is homogeneous
isInt() - Method in class cc.redberry.rings.bigint.BigInteger
Returns whether this BigInteger is less then standard java int.
isIntegral() - Method in class cc.redberry.rings.Rational
whether this rational is integral
isInTheBaseField(E) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
Returns whether the given element belongs to the base field
isLinearExactly() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns whether this polynomial is linear (i.e.
isLinearExactly() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
 
isLinearExactly() - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
 
isLinearOrConstant() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns whether this polynomial is linear (i.e.
isLinearOrConstant() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
 
isLinearOrConstant() - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
 
isLong() - Method in class cc.redberry.rings.bigint.BigInteger
Returns whether this BigInteger is less then standard java long.
isMaximal() - Method in class cc.redberry.rings.poly.multivar.Ideal
Returns true if this ideal is maximal (that is its affine variety has only one point)
isMinusOne() - Method in class cc.redberry.rings.bigint.BigInteger
 
isMinusOne(BigInteger) - Method in class cc.redberry.rings.Integers
 
isMinusOne(E) - Method in interface cc.redberry.rings.Ring
Tests whether specified element is minus one
isMonic() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns true if this polynomial is monic
isMonic() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
isMonic() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
isMonic() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
isMonomial() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns true if this polynomial has only one monomial term
isMonomial() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
 
isMonomial() - Method in class cc.redberry.rings.poly.multivar.Ideal
Whether this ideal is monomial
isMonomial() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
isMonomialIdeal(List<? extends AMultivariatePolynomial>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Check whether all specified generators are monomials
isOne() - Method in class cc.redberry.rings.bigint.BigInteger
 
isOne() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns true if this is one
isOne() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
isOne() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
isOne() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
isOne() - Method in class cc.redberry.rings.Rational
whether this rational is one
isOne(Monomial<E>) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebra
 
isOne(MonomialZp64) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebraZp64
 
isOne(Rational<E>) - Method in class cc.redberry.rings.Rationals
 
isOne(E) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
isOne(E) - Method in interface cc.redberry.rings.Ring
Tests whether specified element is one (exactly)
isOne(I) - Method in class cc.redberry.rings.ImageRing
 
isOne(mPoly) - Method in class cc.redberry.rings.poly.MultipleFieldExtension
 
isOne(Poly) - Method in class cc.redberry.rings.poly.QuotientRing
 
isOne(Term) - Method in interface cc.redberry.rings.poly.multivar.IMonomialAlgebra
Whether term is one
isOverField() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns whether the coefficient ring of this polynomial is a field
isOverField() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
isOverField() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
isOverField() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
isOverField() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
isOverField() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
isOverFiniteField() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns whether the coefficient ring of this polynomial is a finite field
isOverFiniteField() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
isOverFiniteField() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
isOverFiniteField() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
isOverFiniteField() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
isOverFiniteField() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
isOverflowAdd(long, long) - Static method in class cc.redberry.rings.poly.MachineArithmetic
Tests whether the addition of x + y will cause long overflow
isOverflowMultiply(long, long) - Static method in class cc.redberry.rings.poly.MachineArithmetic
Tests whether the multiplication of x*y will cause long overflow
isOverMultipleFieldExtension(T) - Static method in class cc.redberry.rings.poly.Util
Whether coefficient domain is F(alpha1, alpha2, ...)
isOverPerfectPower() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns whether the coefficientRingCardinality() is a perfect power
isOverPerfectPower() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
isOverPerfectPower() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
isOverPerfectPower() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
isOverPerfectPower() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
isOverPerfectPower() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
isOverQ(T) - Static method in class cc.redberry.rings.poly.Util
Whether coefficient domain is Q
isOverRationals(T) - Static method in class cc.redberry.rings.poly.Util
Whether coefficient domain is rationals
isOverRingOfIntegersOfSimpleNumberField(T) - Static method in class cc.redberry.rings.poly.Util
Whether coefficient domain is Q(alpha)
isOverSimpleFieldExtension(T) - Static method in class cc.redberry.rings.poly.Util
Whether coefficient domain is F(alpha)
isOverSimpleNumberField(T) - Static method in class cc.redberry.rings.poly.Util
Whether coefficient domain is Q(alpha)
isOverZ() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns whether the coefficient ring of this polynomial is Z
isOverZ() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
isOverZ() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
isOverZ() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
isOverZ() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
isOverZ() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
isOverZ(T) - Static method in class cc.redberry.rings.poly.Util
Whether coefficient domain is Z
isPerfectPower() - Method in class cc.redberry.rings.ARing
 
isPerfectPower() - Method in class cc.redberry.rings.ImageRing
 
isPerfectPower() - Method in class cc.redberry.rings.IntegersZp64
Returns whether the modulus is a perfect power
isPerfectPower() - Method in class cc.redberry.rings.Rationals
 
isPerfectPower() - Method in interface cc.redberry.rings.Ring
Returns whether the cardinality is a perfect power (p^k with k > 1)
isPrime(int) - Method in class cc.redberry.rings.primes.SieveOfAtkin
 
isPrime(int) - Static method in class cc.redberry.rings.primes.SmallPrimes
Primality test: tells if the argument is a (provable) prime or not.
isPrime(long) - Static method in class cc.redberry.rings.primes.BigPrimes
Strong primality test.
isPrime(BigInteger) - Static method in class cc.redberry.rings.primes.BigPrimes
Strong primality test.
isPrincipal() - Method in class cc.redberry.rings.poly.multivar.Ideal
Whether this ideal is principal
isProbablePrime(int) - Method in class cc.redberry.rings.bigint.BigInteger
Returns true if this BigInteger is probably prime, false if it's definitely composite.
isProper() - Method in class cc.redberry.rings.poly.multivar.Ideal
Whether this is a proper ideal
isPureDegreeVector(Monomial<E>) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebra
 
isPureDegreeVector(MonomialZp64) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebraZp64
 
isPureDegreeVector(Term) - Method in interface cc.redberry.rings.poly.multivar.IMonomialAlgebra
Whether term has unit coefficient
isSquareFree(Poly) - Static method in class cc.redberry.rings.poly.multivar.MultivariateSquareFreeFactorization
Tests whether the given poly is square free.
isSquareFree(T) - Static method in class cc.redberry.rings.poly.univar.UnivariateSquareFreeFactorization
Returns true if poly is square-free and false otherwise
IStringifier<Element> - Interface in cc.redberry.rings.io
Defines #stringify(Stringifiable) method
IStringifier.SimpleStringifier<E> - Class in cc.redberry.rings.io
Simple map-based stringifier
isTrivial() - Method in class cc.redberry.rings.FactorDecomposition
Whether this is a trivial factorization (contains only one factor)
isTrivial() - Method in class cc.redberry.rings.poly.multivar.Ideal
Whether this ideal is the whole ring (basis consists of pne constant polynomial)
isUnit(BigInteger) - Method in class cc.redberry.rings.Integers
 
isUnit(BigInteger) - Method in class cc.redberry.rings.IntegersZp
 
isUnit(Monomial<E>) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebra
 
isUnit(MonomialZp64) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebraZp64
 
isUnit(Rational<E>) - Method in class cc.redberry.rings.Rationals
 
isUnit(E) - Method in class cc.redberry.rings.FactorDecomposition
 
isUnit(E) - Method in class cc.redberry.rings.poly.AlgebraicNumberField
 
isUnit(E) - Method in class cc.redberry.rings.poly.FiniteField
 
isUnit(E) - Method in interface cc.redberry.rings.Ring
Tests whether specified element is a ring unit
isUnit(I) - Method in class cc.redberry.rings.ImageRing
 
isUnit(mPoly) - Method in class cc.redberry.rings.poly.MultipleFieldExtension
 
isUnit(Poly) - Method in class cc.redberry.rings.poly.PolynomialFactorDecomposition
 
isUnit(Poly) - Method in class cc.redberry.rings.poly.QuotientRing
 
isUnit(Term) - Method in interface cc.redberry.rings.poly.multivar.IMonomialAlgebra
Whether term is unit
isUnitCC() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns true if constant term is equal to one
isUnitCC() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
isUnitCC() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
isUnitCC() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
isUnitOrZero(E) - Method in interface cc.redberry.rings.Ring
Tests whether specified element is a ring unit or zero
isVariable() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns whether this is a plain variable (with no coefficient)
isZero() - Method in class cc.redberry.rings.bigint.BigInteger
 
isZero() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns true if this is zero
isZero() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
 
isZero() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
isZero() - Method in class cc.redberry.rings.Rational
whether this rational is zero
isZero(Monomial<E>) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebra
 
isZero(MonomialZp64) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebraZp64
 
isZero(Rational<E>) - Method in class cc.redberry.rings.Rationals
 
isZero(E) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
isZero(E) - Method in interface cc.redberry.rings.Ring
Tests whether specified element is zero
isZero(I) - Method in class cc.redberry.rings.ImageRing
 
isZero(mPoly) - Method in class cc.redberry.rings.poly.MultipleFieldExtension
 
isZero(Poly) - Method in class cc.redberry.rings.poly.QuotientRing
 
isZero(Term) - Method in interface cc.redberry.rings.poly.multivar.IMonomialAlgebra
Whether term is zero
isZeroAt(int) - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
Returns whether i-th coefficient of this is zero
isZeroAt(int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
isZeroCC() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns true if constant term is zero
isZeroCC() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
 
isZeroCC() - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
 
isZeroVector() - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Returns whether all exponents are zero
iterableWithUnit() - Method in class cc.redberry.rings.FactorDecomposition
Iterator over all factors including a unit one
iterator() - Method in class cc.redberry.rings.FactorDecomposition
 
iterator() - Method in class cc.redberry.rings.ImageRing
 
iterator() - Method in class cc.redberry.rings.Integers
 
iterator() - Method in class cc.redberry.rings.IntegersZp
 
iterator() - Method in class cc.redberry.rings.poly.AlgebraicNumberField
 
iterator() - Method in class cc.redberry.rings.poly.FiniteField
Returns iterator over all field elements
iterator() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
 
iterator() - Method in class cc.redberry.rings.poly.multivar.MonomialSet
 
iterator() - Method in class cc.redberry.rings.poly.QuotientRing
 
iterator() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
iterator() - Method in class cc.redberry.rings.Rationals
 
iterator() - Method in interface cc.redberry.rings.Ring
Returns iterator over ring elements (for finite rings, otherwise throws exception)
iterator() - Method in class cc.redberry.rings.util.ListWrapper
 
IUnivariatePolynomial<Poly extends IUnivariatePolynomial<Poly>> - Interface in cc.redberry.rings.poly.univar
Parent interface for univariate polynomials.

J

JacobianMatrix(List<Poly>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerMethods
Creates a Jacobian matrix of a given list of polynomials
joinAlgebraicElement(UnivariatePolynomial<mPoly>) - Method in class cc.redberry.rings.poly.MultipleFieldExtension
Adds algebraic element given by its minimal polynomial (not checked that it is irreducible) to this.
joinAlgebraicElement(sPoly) - Method in class cc.redberry.rings.poly.MultipleFieldExtension
Adds algebraic element given by its minimal polynomial (not checked that it is irreducible) to this.
joinNewVariable() - Method in class cc.redberry.rings.poly.multivar.AMonomial
Joins new variable (with zero exponent) to degree vector
joinNewVariable() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns a copy of this with nVariables = nVariables + 1
joinNewVariables(int) - Method in class cc.redberry.rings.poly.multivar.AMonomial
Joins new variables (with zero exponents) to degree vector
joinNewVariables(int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns a copy of this with nVariables = nVariables + m
joinNewVariables(int, int[]) - Method in class cc.redberry.rings.poly.multivar.AMonomial
internal API
joinRedundantElement(mPoly) - Method in class cc.redberry.rings.poly.MultipleFieldExtension
Adds algebraic element given by its minimal polynomial (not checked that it is irreducible) to this.

K

KaltofenMonaganEEZModularGCDInGF(MultivariatePolynomial<E>, MultivariatePolynomial<E>) - Static method in class cc.redberry.rings.poly.multivar.MultivariateGCD
Modular GCD algorithm for polynomials over finite fields of small cardinality.
KaltofenMonaganEEZModularGCDInGF(MultivariatePolynomialZp64, MultivariatePolynomialZp64) - Static method in class cc.redberry.rings.poly.multivar.MultivariateGCD
Modular GCD algorithm for polynomials over finite fields of small cardinality.
KaltofenMonaganModularGCDInGF(MultivariatePolynomialZp64, MultivariatePolynomialZp64, MultivariateGCD.KaltofenMonaganAlgorithm) - Static method in class cc.redberry.rings.poly.multivar.MultivariateGCD
Modular GCD algorithm for polynomials over finite fields of small cardinality.
KaltofenMonaganSparseModularGCDInGF(MultivariatePolynomial<E>, MultivariatePolynomial<E>) - Static method in class cc.redberry.rings.poly.multivar.MultivariateGCD
Modular GCD algorithm for polynomials over finite fields of small cardinality.
KaltofenMonaganSparseModularGCDInGF(MultivariatePolynomialZp64, MultivariatePolynomialZp64) - Static method in class cc.redberry.rings.poly.multivar.MultivariateGCD
Modular GCD algorithm for polynomials over finite fields of small cardinality.
katsura(int) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBasesData
 
katsura10() - Static method in class cc.redberry.rings.poly.multivar.GroebnerBasesData
 
katsura11() - Static method in class cc.redberry.rings.poly.multivar.GroebnerBasesData
 
katsura12() - Static method in class cc.redberry.rings.poly.multivar.GroebnerBasesData
 
katsura13() - Static method in class cc.redberry.rings.poly.multivar.GroebnerBasesData
 
katsura14() - Static method in class cc.redberry.rings.poly.multivar.GroebnerBasesData
 
katsura2() - Static method in class cc.redberry.rings.poly.multivar.GroebnerBasesData
 
katsura3() - Static method in class cc.redberry.rings.poly.multivar.GroebnerBasesData
 
katsura4() - Static method in class cc.redberry.rings.poly.multivar.GroebnerBasesData
 
katsura5() - Static method in class cc.redberry.rings.poly.multivar.GroebnerBasesData
 
katsura6() - Static method in class cc.redberry.rings.poly.multivar.GroebnerBasesData
 
katsura7() - Static method in class cc.redberry.rings.poly.multivar.GroebnerBasesData
 
katsura8() - Static method in class cc.redberry.rings.poly.multivar.GroebnerBasesData
 
katsura9() - Static method in class cc.redberry.rings.poly.multivar.GroebnerBasesData
 

L

last() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
 
last() - Method in class cc.redberry.rings.poly.multivar.MonomialSet
Last monomial in this set
lastIndexOf(Object) - Method in class cc.redberry.rings.util.ListWrapper
 
lastPrime() - Method in class cc.redberry.rings.primes.SieveOfAtkin
Returns the last prime in this sieve
lastRemainder() - Method in class cc.redberry.rings.poly.univar.UnivariateResultants.APolynomialRemainderSequence
The last element in PRS, that is the GCD
lc() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Returns the leading coefficient of this polynomial that is coefficient of the largest term according to the ordering.
lc() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Returns the leading coefficient of this polynomial that is coefficient of the largest term according to the ordering.
lc() - Method in class cc.redberry.rings.poly.PolynomialFactorDecomposition
Resulting lead coefficient
lc() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Returns the leading coefficient
lc(int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns the leading coefficient of this viewed as R[other_variables][variable]
lc(Comparator<DegreeVector>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Returns the leading coefficient of this polynomial with respect to specified ordering
lc(Comparator<DegreeVector>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Returns the leading coefficient of this polynomial with respect to specified ordering
lcAsPoly() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns the leading coefficient as a constant poly
lcAsPoly() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
lcAsPoly() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
lcAsPoly() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
lcAsPoly(Comparator<DegreeVector>) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns the leading coefficient with respect to specified ordering as a constant poly
lcAsPoly(Comparator<DegreeVector>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
lcAsPoly(Comparator<DegreeVector>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
lcm(int, int) - Static method in class cc.redberry.rings.poly.MachineArithmetic
Returns the least common multiple of two integers
lcm(long, long) - Static method in class cc.redberry.rings.poly.MachineArithmetic
Returns the least common multiple of two longs
lcm(E...) - Method in interface cc.redberry.rings.Ring
Returns the least common multiple of two elements
lcm(E, E) - Method in interface cc.redberry.rings.Ring
Returns the least common multiple of two elements
lcm(I, I) - Method in class cc.redberry.rings.ImageRing
 
lcm(Iterable<E>) - Method in interface cc.redberry.rings.Ring
Returns the least common multiple of two elements
lcm(mPoly, mPoly) - Method in class cc.redberry.rings.poly.MultipleFieldExtension
 
leadTermsSet(List<? extends AMultivariatePolynomial>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
List of lead terms of generators
LeinartasDecomposition(Rational<Poly>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerMethods
Computes Leinartas's decomposition of given rational expression (see https://arxiv.org/abs/1206.4740)
LEX - Static variable in class cc.redberry.rings.poly.multivar.MonomialOrder
Lexicographic monomial order.
lift() - Method in class cc.redberry.rings.poly.univar.HenselLifting.bLinearLift
 
lift() - Method in interface cc.redberry.rings.poly.univar.HenselLifting.LiftableQuintet
Performs single lift step.
lift() - Method in class cc.redberry.rings.poly.univar.HenselLifting.lLinearLift
 
lift(int) - Method in interface cc.redberry.rings.poly.univar.HenselLifting.LiftableQuintet
Lifts nIterations times.
liftFactorization(long, long, int, UnivariatePolynomialZ64, List<UnivariatePolynomialZp64>, boolean) - Static method in class cc.redberry.rings.poly.univar.HenselLifting
Lifts modular factorization nIterations times using whether linear or quadratic lifting.
liftFactorization(long, long, UnivariatePolynomialZ64, List<UnivariatePolynomialZp64>, boolean) - Static method in class cc.redberry.rings.poly.univar.HenselLifting
Lifts modular factorization until modulus will overcome desiredBound.
liftFactorization(BigInteger, BigInteger, UnivariatePolynomial<BigInteger>, List<UnivariatePolynomialZp64>) - Static method in class cc.redberry.rings.poly.univar.HenselLifting
Lifts modular factorization until modulus will overcome desiredBound.
liftFactorization(BigInteger, BigInteger, UnivariatePolynomial<BigInteger>, List<UnivariatePolynomialZp64>, boolean) - Static method in class cc.redberry.rings.poly.univar.HenselLifting
Lifts modular factorization until modulus will overcome desiredBound.
liftFactorizationQuadratic(BigInteger, BigInteger, UnivariatePolynomial<BigInteger>, List<UnivariatePolynomial<BigInteger>>) - Static method in class cc.redberry.rings.poly.univar.HenselLifting
Lifts modular factorization until modulus will overcome desiredBound.
liftLast() - Method in class cc.redberry.rings.poly.univar.HenselLifting.bLinearLift
 
liftLast() - Method in interface cc.redberry.rings.poly.univar.HenselLifting.LiftableQuintet
Performs single lift step but don't lift co-factors (xgcd coefficients).
liftLast() - Method in class cc.redberry.rings.poly.univar.HenselLifting.lLinearLift
 
liftWithCoFactors(int) - Method in interface cc.redberry.rings.poly.univar.HenselLifting.LiftableQuintet
Lifts nIterations times.
linear(long, long, long) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
Creates linear polynomial of form cc + x * lc
LinearSolver - Class in cc.redberry.rings.linear
Solver for quadratic linear system
LinearSolver.SystemInfo - Enum in cc.redberry.rings.linear
Info about linear system
list - Variable in class cc.redberry.rings.util.ListWrapper
Inner list
listIterator() - Method in class cc.redberry.rings.util.ListWrapper
 
listIterator(int) - Method in class cc.redberry.rings.util.ListWrapper
 
ListWrapper<Poly> - Class in cc.redberry.rings.util
A simple list wrapper
ListWrapper(List<Poly>) - Constructor for class cc.redberry.rings.util.ListWrapper
 
LONG_MAX_VALUE - Static variable in class cc.redberry.rings.bigint.BigInteger
The BigInteger constant Long.MAX_VALUE.
longValue() - Method in class cc.redberry.rings.bigint.BigDecimal
Converts this BigDecimal to a long.
longValue() - Method in class cc.redberry.rings.bigint.BigInteger
Converts this BigInteger to a long.
longValueExact() - Method in class cc.redberry.rings.bigint.BigDecimal
Converts this BigDecimal to a long, checking for lost information.
longValueExact() - Method in class cc.redberry.rings.bigint.BigInteger
Converts this BigInteger to a long, checking for lost information.
lPrecomputedPowers(int, long, IntegersZp64) - Constructor for class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64.lPrecomputedPowers
 
lPrecomputedPowers(long, IntegersZp64) - Constructor for class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64.lPrecomputedPowers
 
lPrecomputedPowersHolder(IntegersZp64, MultivariatePolynomialZp64.lPrecomputedPowers[]) - Constructor for class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64.lPrecomputedPowersHolder
 
lQuadraticLift(long, UnivariatePolynomialZ64, UnivariatePolynomialZp64, UnivariatePolynomialZp64, UnivariatePolynomialZp64, UnivariatePolynomialZp64) - Constructor for class cc.redberry.rings.poly.univar.HenselLifting.lQuadraticLift
 
lt() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns the leading term in this polynomial according to ordering
lt(Comparator<DegreeVector>) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns the leading term in this polynomial according to specified ordering
ltAsPoly() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns the leading term in this polynomial according to ordering
ltIdeal() - Method in class cc.redberry.rings.poly.multivar.Ideal
Ideal of leading terms
LucasPrimalityTest(BigInteger, int, RandomGenerator) - Static method in class cc.redberry.rings.primes.BigPrimes
 

M

MachineArithmetic - Class in cc.redberry.rings.poly
Helper methods for arithmetic with machine numbers.
magic - Variable in class cc.redberry.rings.IntegersZp64
magic
magic32MulMod - Variable in class cc.redberry.rings.IntegersZp64
magic
map(int, int[]) - Method in class cc.redberry.rings.poly.multivar.AMonomial
Renames old variables to new according to mapping
map(Ring<O>, Function<E, O>) - Method in class cc.redberry.rings.Rational
Maps rational to a new ring
map(Ring<Oth>, Function<Element, Oth>) - Method in class cc.redberry.rings.io.Coder
Maps this coder to a given type via mapper func which just applies to each parsed element as well as to bindings (for IStringifier.stringify(Object)).
map(Function<E, E>) - Method in class cc.redberry.rings.Rational
Maps rational
mapCoefficients(IntegersZp64, ToLongFunction<E>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Maps coefficients of this using specified mapping function
mapCoefficients(IntegersZp64, ToLongFunction<E>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Applies transformation function to this and returns the result.
mapCoefficients(Ring<T>, Function<E, T>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Maps coefficients of this using specified mapping function
mapCoefficients(Ring<T>, Function<E, T>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Applies transformation function to this and returns the result.
mapCoefficients(Ring<T>, LongFunction<T>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Maps coefficients of this using specified mapping function
mapCoefficientsAsPolys(Ring<E>, Function<MultivariatePolynomialZp64, E>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
mapCoefficientsAsPolys(Ring<E>, Function<Poly, E>) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
 
mapCoefficientsAsPolys(Ring<E>, Function<Poly, E>) - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
 
mapCoefficientsAsPolys(Ring<T>, Function<MultivariatePolynomial<E>, T>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
mapTerms(IntegersZp64, Function<MonomialZp64, MonomialZp64>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Maps terms of this using specified mapping function
mapTerms(Ring<T>, Function<Monomial<E>, Monomial<T>>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Maps terms of this using specified mapping function
mapTerms(Ring<T>, Function<MonomialZp64, Monomial<T>>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Maps terms of this using specified mapping function
mapTo(Ring<R>, Function<E, R>) - Method in class cc.redberry.rings.FactorDecomposition
 
mapTo(Function<Poly, OthPoly>) - Method in class cc.redberry.rings.poly.PolynomialFactorDecomposition
 
mapVariables(int[]) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Renames old variables to new according to mapping
MathContext - Class in cc.redberry.rings.bigint
Immutable objects which encapsulate the context settings which describe certain rules for numerical operators, such as those implemented by the BigDecimal class.
MathContext(int) - Constructor for class cc.redberry.rings.bigint.MathContext
Constructs a new MathContext with the specified precision and the HALF_UP rounding mode.
MathContext(int, RoundingMode) - Constructor for class cc.redberry.rings.bigint.MathContext
Constructs a new MathContext with a specified precision and rounding mode.
MathContext(String) - Constructor for class cc.redberry.rings.bigint.MathContext
Constructs a new MathContext from a string.
max(int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
max(int[], int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
max(int[], int, int) - Static method in class cc.redberry.rings.util.ArraysUtil
 
max(long[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
max(BigDecimal) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns the maximum of this BigDecimal and val.
max(BigInteger) - Method in class cc.redberry.rings.bigint.BigInteger
Returns the maximum of this BigInteger and val.
max(BigInteger, BigInteger) - Static method in class cc.redberry.rings.bigint.BigIntegerUtil
 
max(E, E) - Method in interface cc.redberry.rings.Ring
Returns the max value (no copy)
MAX_DEGREE_OF_RANDOM_POLY - Static variable in class cc.redberry.rings.poly.UnivariateRing
The maximal degree of polynomial generated with UnivariateRing.randomElement(RandomGenerator)
MAX_KATSURA - Static variable in class cc.redberry.rings.poly.multivar.GroebnerBasesData
 
MAX_SUPPORTED_MODULUS - Static variable in class cc.redberry.rings.poly.MachineArithmetic
Max supported modulus which fits into machine word
MAX_SUPPORTED_MODULUS_BITS - Static variable in class cc.redberry.rings.poly.MachineArithmetic
Max supported modulus bits which fits into machine word
maxAbsCoefficient() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Returns max absolute coefficient
maxAbsCoefficient() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Returns max abs coefficient of the poly
merge(IPolynomialRing<MultivariatePolynomial<Poly>>, int...) - Static method in class cc.redberry.rings.poly.multivar.MultivariateConversions
Given poly in R[x1,x2,...,xN] converts to poly in R[variables][other_variables]
merge(MultivariatePolynomial<Poly>, int...) - Static method in class cc.redberry.rings.poly.multivar.MultivariateConversions
Given poly in R[variables][other_variables] converts it to poly in R[x1,x2,...,xN]
mignotteBound() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
Returns Mignotte's bound (sqrt(n+1) * 2^n max |this|)
mignotteBound(UnivariatePolynomial<BigInteger>) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Returns Mignotte's bound (sqrt(n+1) * 2^n max |this|) of the poly
millerRabinPrimeTest(int) - Static method in class cc.redberry.rings.primes.SmallPrimes
Miller-Rabin probabilistic primality test for int type, used in such a way that a result is always guaranteed.
min(int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
min(int[], int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
min(int[], int, int) - Static method in class cc.redberry.rings.util.ArraysUtil
 
min(long[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
min(BigDecimal) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns the minimum of this BigDecimal and val.
min(BigInteger) - Method in class cc.redberry.rings.bigint.BigInteger
Returns the minimum of this BigInteger and val.
min(E, E) - Method in interface cc.redberry.rings.Ring
Returns the min value (no copy)
MIN_DEGREE_OF_RANDOM_POLY - Static variable in class cc.redberry.rings.poly.UnivariateRing
The minimal degree of polynomial generated with UnivariateRing.randomElement(RandomGenerator)
MIN_KATSURA - Static variable in class cc.redberry.rings.poly.multivar.GroebnerBasesData
 
minimalPolynomial(E) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
Computes minimal polynomial of a given algebraic element
minimizeGroebnerBases(List<Poly>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Minimizes Groebner basis.
MINUS - Static variable in class cc.redberry.rings.io.Tokenizer
 
mk(long, long) - Method in class cc.redberry.rings.Rationals
Gives rational with a given numerator and denominator
mk(E, E) - Method in class cc.redberry.rings.Rationals
Gives rational with a given numerator and denominator
mkCharacterStream(String, Character) - Static method in class cc.redberry.rings.io.Tokenizer
Create character stream from string
mkCoder(Ring<E>) - Static method in class cc.redberry.rings.io.Coder
Create coder for generic ring
mkCoder(Ring<E>, Map<String, E>) - Static method in class cc.redberry.rings.io.Coder
Create coder for generic rings
mkCoder(Ring<Element>, Map<String, Element>, MultivariateRing<Poly>, Map<String, Poly>, SerializableFunction<Poly, Element>) - Static method in class cc.redberry.rings.io.Coder
 
mkCoder(String...) - Method in interface cc.redberry.rings.poly.IPolynomialRing
Simple coder for this ring
mkDenominator(long) - Method in class cc.redberry.rings.Rationals
Gives rational with a given denominator and unit numerator
mkDenominator(E) - Method in class cc.redberry.rings.Rationals
Gives rational with a given denominator and unit numerator
mkMultipleExtension(SimpleFieldExtension<sPoly>) - Static method in class cc.redberry.rings.poly.MultipleFieldExtension
 
mkMultipleExtension(sPoly) - Static method in class cc.redberry.rings.poly.MultipleFieldExtension
 
mkMultipleExtension(sPoly...) - Static method in class cc.redberry.rings.poly.MultipleFieldExtension
Creates multiple field extension F(α_1, α_2, ..., α_i) where α_i are specified by their minimal polynomials over F.
mkMultipleExtensionCoder(MultipleFieldExtension<Term, mPoly, sPoly>, String...) - Static method in class cc.redberry.rings.io.Coder
Create coder for multiple field extension
mkMultipleExtensionCoder(MultipleFieldExtension<Term, mPoly, sPoly>, Map<String, mPoly>) - Static method in class cc.redberry.rings.io.Coder
Create coder for multiple field extension
mkMultivariateCoder(MultivariateRing<MultivariatePolynomial<E>>, Coder<E, ?, ?>, String...) - Static method in class cc.redberry.rings.io.Coder
Create parser for multivariate polynomial rings
mkMultivariateCoder(MultivariateRing<MultivariatePolynomial<E>>, Coder<E, ?, ?>, Map<String, MultivariatePolynomial<E>>) - Static method in class cc.redberry.rings.io.Coder
Create coder for multivariate polynomial rings
mkMultivariateCoder(MultivariateRing<Poly>, String...) - Static method in class cc.redberry.rings.io.Coder
Create coder for multivariate polynomial rings
mkMultivariateCoder(MultivariateRing<Poly>, Map<String, Poly>) - Static method in class cc.redberry.rings.io.Coder
Create coder for multivariate polynomial rings
mkNestedCoder(Ring<E>, Map<String, E>, Coder<I, ?, ?>, SerializableFunction<I, E>) - Static method in class cc.redberry.rings.io.Coder
Create coder for nested rings (e.g.
mkNumerator(long) - Method in class cc.redberry.rings.Rationals
Gives rational with a given numerator and unit denominator
mkNumerator(E) - Method in class cc.redberry.rings.Rationals
Gives rational with a given numerator and unit denominator
mkPolynomialCoder(IPolynomialRing<Poly>, String...) - Static method in class cc.redberry.rings.io.Coder
Create coder for generic polynomial rings
mkPolyStringifier(IPolynomialRing<Poly>, String...) - Static method in interface cc.redberry.rings.io.IStringifier
Create simple stringifier for polynomials with given variables
mkPolyStringifier(Poly, String...) - Static method in interface cc.redberry.rings.io.IStringifier
Create simple stringifier for polynomials with given variables
mkPrecomputedPowers(int[], long[]) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
mkPrecomputedPowers(int[], E[]) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
mkPrecomputedPowers(int, long) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
mkPrecomputedPowers(int, IntegersZp64, int[], long[]) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
mkPrecomputedPowers(int, Ring<E>, int[], E[]) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
mkPrecomputedPowers(int, E) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
mkPrecomputedPowers(long[]) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
mkPrecomputedPowers(E[]) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
mkRationalsCoder(Rationals<E>, Coder<E, ?, ?>) - Static method in class cc.redberry.rings.io.Coder
Create coder for rational elements
mkSplittingField(sPoly) - Static method in class cc.redberry.rings.poly.MultipleFieldExtension
Constructs splitting field for a given polynomial.
mkStringifier(Map<E, String>) - Static method in interface cc.redberry.rings.io.IStringifier
Create simple stringifier
mkTokenizer(String) - Static method in class cc.redberry.rings.io.Tokenizer
Create string tokenizer
mkTokenizer(String, Character) - Static method in class cc.redberry.rings.io.Tokenizer
Create string tokenizer
mkUnivariateCoder(IPolynomialRing<UnivariatePolynomial<E>>, Coder<E, ?, ?>, String) - Static method in class cc.redberry.rings.io.Coder
Create coder for univariate polynomial rings
mkUnivariateCoder(IPolynomialRing<UnivariatePolynomial<E>>, Coder<E, ?, ?>, Map<String, UnivariatePolynomial<E>>) - Static method in class cc.redberry.rings.io.Coder
Create coder for univariate polynomial rings
mkUnivariateCoder(IPolynomialRing<Poly>, String) - Static method in class cc.redberry.rings.io.Coder
Create coder for univariate polynomial rings
mkUnivariateCoder(IPolynomialRing<Poly>, Map<String, Poly>) - Static method in class cc.redberry.rings.io.Coder
Create coder for univariate polynomial rings
mod(long) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is (this mod m).
mod(long, long) - Static method in class cc.redberry.rings.poly.MachineArithmetic
mod(BigInteger) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is (this mod m).
mod(Poly) - Method in class cc.redberry.rings.poly.QuotientRing
 
modInverse(long, long) - Static method in class cc.redberry.rings.poly.MachineArithmetic
Returns a solution of congruence num * x = 1 mod modulus
modInverse(BigInteger) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is (this-1 mod m).
modPow(BigInteger, BigInteger) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is (thisexponent mod m).
ModularComposition - Class in cc.redberry.rings.poly.univar
Univariate polynomial modular composition.
ModularExtendedRationalGCD(UnivariatePolynomial<Rational<BigInteger>>, UnivariatePolynomial<Rational<BigInteger>>) - Static method in class cc.redberry.rings.poly.univar.UnivariateGCD
Modular GCD algorithm for polynomials over Z.
ModularExtendedResultantGCDInQ(UnivariatePolynomial<Rational<BigInteger>>, UnivariatePolynomial<Rational<BigInteger>>) - Static method in class cc.redberry.rings.poly.univar.UnivariateGCD
Modular extended GCD algorithm for polynomials over Q with the use of resultants.
ModularExtendedResultantGCDInZ(UnivariatePolynomial<BigInteger>, UnivariatePolynomial<BigInteger>) - Static method in class cc.redberry.rings.poly.univar.UnivariateGCD
Modular extended GCD algorithm for polynomials over Z with the use of resultants.
ModularGB(List<MultivariatePolynomial<BigInteger>>, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Modular Groebner basis algorithm.
ModularGB(List<MultivariatePolynomial<BigInteger>>, Comparator<DegreeVector>, GroebnerBases.GroebnerAlgorithm, GroebnerBases.GroebnerAlgorithm, BigInteger, GroebnerBases.HilbertSeries, boolean) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Modular Groebner basis algorithm.
ModularGB(List<MultivariatePolynomial<BigInteger>>, Comparator<DegreeVector>, GroebnerBases.HilbertSeries) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Modular Groebner basis algorithm.
ModularGB(List<MultivariatePolynomial<BigInteger>>, Comparator<DegreeVector>, GroebnerBases.HilbertSeries, boolean) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Modular Groebner basis algorithm.
ModularGCD(UnivariatePolynomial<BigInteger>, UnivariatePolynomial<BigInteger>) - Static method in class cc.redberry.rings.poly.univar.UnivariateGCD
Modular GCD algorithm for polynomials over Z.
ModularGCD(UnivariatePolynomialZ64, UnivariatePolynomialZ64) - Static method in class cc.redberry.rings.poly.univar.UnivariateGCD
Modular GCD algorithm for polynomials over Z.
ModularGCDInNumberFieldViaLangemyrMcCallum(MultivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>>, MultivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>>, BiFunction<MultivariatePolynomial<UnivariatePolynomialZp64>, MultivariatePolynomial<UnivariatePolynomialZp64>, MultivariatePolynomial<UnivariatePolynomialZp64>>) - Static method in class cc.redberry.rings.poly.multivar.MultivariateGCD
Zippel's sparse modular interpolation algorithm for polynomials over simple field extensions with the use of Langemyr & McCallum approach to avoid rational reconstruction
ModularGCDInNumberFieldViaRationalReconstruction(MultivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>>, MultivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>>, BiFunction<MultivariatePolynomial<UnivariatePolynomialZp64>, MultivariatePolynomial<UnivariatePolynomialZp64>, MultivariatePolynomial<UnivariatePolynomialZp64>>) - Static method in class cc.redberry.rings.poly.multivar.MultivariateGCD
Modular interpolation algorithm for polynomials over simple field extensions with the use of Langemyr & McCallum approach to avoid rational reconstruction
ModularGCDInZ(MultivariatePolynomial<BigInteger>, MultivariatePolynomial<BigInteger>, BiFunction<MultivariatePolynomialZp64, MultivariatePolynomialZp64, MultivariatePolynomialZp64>) - Static method in class cc.redberry.rings.poly.multivar.MultivariateGCD
Modular GCD algorithm for polynomials over Z.
ModularResultant(UnivariatePolynomial<BigInteger>, UnivariatePolynomial<BigInteger>) - Static method in class cc.redberry.rings.poly.univar.UnivariateResultants
Modular algorithm for computing resultants over Z
ModularResultantInNumberField(MultivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>>, MultivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>>, int) - Static method in class cc.redberry.rings.poly.multivar.MultivariateResultants
Modular resultant in simple number field
ModularResultantInNumberField(UnivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>>, UnivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>>) - Static method in class cc.redberry.rings.poly.univar.UnivariateResultants
Modular resultant in simple number field
ModularResultantInRingOfIntegersOfNumberField(MultivariatePolynomial<UnivariatePolynomial<BigInteger>>, MultivariatePolynomial<UnivariatePolynomial<BigInteger>>, int) - Static method in class cc.redberry.rings.poly.multivar.MultivariateResultants
Modular algorithm with Zippel sparse interpolation for resultant over rings of integers
ModularResultantInRingOfIntegersOfNumberField(UnivariatePolynomial<UnivariatePolynomial<BigInteger>>, UnivariatePolynomial<UnivariatePolynomial<BigInteger>>) - Static method in class cc.redberry.rings.poly.univar.UnivariateResultants
Modular resultant in the ring of integers of number field
ModularResultantInZ(MultivariatePolynomial<BigInteger>, MultivariatePolynomial<BigInteger>, int) - Static method in class cc.redberry.rings.poly.multivar.MultivariateResultants
Modular algorithm with Zippel sparse interpolation for resultant over Z
modulus - Variable in class cc.redberry.rings.IntegersZp
The modulus.
modulus - Variable in class cc.redberry.rings.IntegersZp64
the modulus
modulus - Variable in class cc.redberry.rings.poly.univar.HenselLifting.lLinearLift
The modulus
modulus - Variable in class cc.redberry.rings.poly.univar.HenselLifting.lQuadraticLift
The modulus
modulus() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
Returns the modulus
modulus(long) - Method in class cc.redberry.rings.IntegersZp64
Returns val % this.modulus
modulus(long) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
Reduces (copied) polynomial modulo modulus and returns the result.
modulus(long[]) - Method in class cc.redberry.rings.IntegersZp64
Inplace sets elements of data to data % this.modulus
modulus(long, boolean) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
Reduces this polynomial modulo modulus and returns the result.
modulus(BigInteger) - Method in class cc.redberry.rings.IntegersZp
Returns val mod this.modulus
modulus(BigInteger) - Method in class cc.redberry.rings.IntegersZp64
Returns val % this.modulus
modulus(IntegersZp64) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
Reduces (copied) polynomial modulo modulus and returns the result.
modulus(IntegersZp64, boolean) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
Reduces this polynomial modulo modulus and returns the result.
modulusFits32 - Variable in class cc.redberry.rings.IntegersZp64
whether modulus less then 2^32 (if so, faster mulmod available)
monic() - Method in interface cc.redberry.rings.poly.IPolynomial
Sets this to its monic part (that is this divided by its leading coefficient), or returns null (causing loss of internal data) if some of the elements can't be exactly divided by the lc().
monic() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Makes this polynomial monic if possible, if not -- destroys this and returns null
monic() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Makes this polynomial monic
monic() - Method in class cc.redberry.rings.poly.PolynomialFactorDecomposition
Makes each factor monic (moving leading coefficients to the PolynomialFactorDecomposition.unit(Poly))
monic() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
monic() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
monic() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
monic(long) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Sets this to its monic part (with respect to given ordering) multiplied by the given factor;
monic(long) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
monic(long) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
Sets this to its monic part multiplied by the factor (that is monic(modulus).multiply(factor) ).
monic(E) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Sets this to its monic part multiplied by the factor modulo modulus (that is monic(modulus).multiply(factor) ).
monic(E) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Sets this to its monic part multiplied by the factor.
monic(Comparator<DegreeVector>) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Make this poly monic considering leading term with respect to given ordering
monic(Comparator<DegreeVector>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
monic(Comparator<DegreeVector>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
monic(Comparator<DegreeVector>, long) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Sets this to its monic part (with respect to given ordering) multiplied by the given factor;
monic(Comparator<DegreeVector>, E) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Sets this to its monic part (with respect to given ordering) multiplied by the given factor;
monicExact() - Method in interface cc.redberry.rings.poly.IPolynomial
Sets this to its monic part (that is this divided by its leading coefficient), or throws ArithmeticException if some of the elements can't be exactly divided by the l.c.
monicExtendedEuclid(Poly, Poly) - Static method in class cc.redberry.rings.poly.univar.DiophantineEquations
runs xgcd for coprime polynomials ensuring that gcd is 1 (not another constant)
monicWithLC(MultivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
monicWithLC(MultivariatePolynomialZp64) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
monicWithLC(UnivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
monicWithLC(Comparator<DegreeVector>, MultivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
monicWithLC(Comparator<DegreeVector>, MultivariatePolynomialZp64) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
monicWithLC(Comparator<DegreeVector>, Poly) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Sets this to its monic part multiplied by the leading coefficient of other with respect to given ordering
monicWithLC(Poly) - Method in interface cc.redberry.rings.poly.IPolynomial
Sets this to its monic part multiplied by the leading coefficient of other;
monomial(long, int) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
Creates monomial coefficient * x^exponent
monomial(long, long, int) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
Creates monomial coefficient * x^exponent
Monomial<E> - Class in cc.redberry.rings.poly.multivar
Monomial with coefficient from generic ring
Monomial(int[], int, E) - Constructor for class cc.redberry.rings.poly.multivar.Monomial
 
Monomial(int[], E) - Constructor for class cc.redberry.rings.poly.multivar.Monomial
 
Monomial(int, E) - Constructor for class cc.redberry.rings.poly.multivar.Monomial
 
Monomial(DegreeVector, E) - Constructor for class cc.redberry.rings.poly.multivar.Monomial
 
monomialAlgebra - Variable in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Monomial algebra
monomialAlgebra() - Method in class cc.redberry.rings.poly.MultivariateRing
 
MonomialAlgebra(Ring<E>) - Constructor for class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebra
 
MonomialAlgebraZp64(IntegersZp64) - Constructor for class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebraZp64
 
monomialContent() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns the monomial content of this polynomial
MonomialOrder - Class in cc.redberry.rings.poly.multivar
Common monomial orderings.
MonomialOrder.EliminationOrder - Class in cc.redberry.rings.poly.multivar
 
MonomialOrder.GrevLexWithPermutation - Class in cc.redberry.rings.poly.multivar
 
MonomialSet<Term extends AMonomial<Term>> - Class in cc.redberry.rings.poly.multivar
Sorted set of monomials -- basic underlying data structure of multivariate polynomials.
MonomialSet(Comparator<? super DegreeVector>) - Constructor for class cc.redberry.rings.poly.multivar.MonomialSet
 
MonomialSet(SortedMap<DegreeVector, ? extends Term>) - Constructor for class cc.redberry.rings.poly.multivar.MonomialSet
Constructs a new monomial set containing the same mappings and using the same ordering as the specified sorted map.
MonomialZp64 - Class in cc.redberry.rings.poly.multivar
Monomial with coefficient from Zp with p < 2^64
MonomialZp64(int[], int, long) - Constructor for class cc.redberry.rings.poly.multivar.MonomialZp64
 
MonomialZp64(int[], long) - Constructor for class cc.redberry.rings.poly.multivar.MonomialZp64
 
MonomialZp64(int, long) - Constructor for class cc.redberry.rings.poly.multivar.MonomialZp64
 
MonomialZp64(DegreeVector, long) - Constructor for class cc.redberry.rings.poly.multivar.MonomialZp64
 
movePointLeft(int) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal which is equivalent to this one with the decimal point moved n places to the left.
movePointRight(int) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal which is equivalent to this one with the decimal point moved n places to the right.
mt() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns the minimal term in this polynomial according to ordering
multidegree() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns the multidegree of this polynomial i.e.
MultipleFieldExtension<Term extends AMonomial<Term>,​mPoly extends AMultivariatePolynomial<Term,​mPoly>,​sPoly extends IUnivariatePolynomial<sPoly>> - Class in cc.redberry.rings.poly
Multiple field extension F(α_1, α_2, ..., α_N).
MultipleFieldExtension(MultipleFieldExtension<Term, mPoly, sPoly>[], UnivariatePolynomial<mPoly>[], mPoly, sPoly[], SimpleFieldExtension<sPoly>) - Constructor for class cc.redberry.rings.poly.MultipleFieldExtension
 
MultipleFieldExtension(sPoly...) - Static method in class cc.redberry.rings.Rings
Multiple field extension generated by given algebraic elements represented by their minimal polynomials (not tested that they are irreducible)
multiply() - Method in class cc.redberry.rings.FactorDecomposition
Multiply factors
multiply(int[]) - Method in class cc.redberry.rings.poly.multivar.AMonomial
Multiplies this by oth
multiply(int[], int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
multiply(int[], int, int) - Static method in class cc.redberry.rings.util.ArraysUtil
 
multiply(long) - Method in interface cc.redberry.rings.poly.IPolynomial
Multiplies this by factor
multiply(long) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
multiply(long) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
multiply(long) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
multiply(long, long) - Method in class cc.redberry.rings.IntegersZp64
Multiply mod operation
multiply(BigDecimal) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is (this × multiplicand), and whose scale is (this.scale() + multiplicand.scale()).
multiply(BigDecimal, MathContext) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is (this × multiplicand), with rounding according to the context settings.
multiply(BigInteger) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is (this * val).
multiply(BigInteger, int) - Method in class cc.redberry.rings.bigint.BigInteger
Multiplies this number by another using a specified number of threads if the inputs are sufficiently large.
multiply(BigInteger, BigInteger) - Method in class cc.redberry.rings.Integers
 
multiply(BigInteger, BigInteger) - Method in class cc.redberry.rings.IntegersZp
 
multiply(DegreeVector) - Method in class cc.redberry.rings.poly.multivar.AMonomial
Multiplies this by oth
multiply(Ideal<Term, Poly>) - Method in class cc.redberry.rings.poly.multivar.Ideal
Returns the product of this and oth
multiply(Monomial<E>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
multiply(Monomial<E>, BigInteger) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebra
 
multiply(Monomial<E>, Monomial<E>) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebra
 
multiply(MonomialZp64) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
multiply(MonomialZp64, BigInteger) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebraZp64
 
multiply(MonomialZp64, MonomialZp64) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebraZp64
 
multiply(MultivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
multiply(MultivariatePolynomialZp64) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
multiply(UnivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
multiply(UnivariatePolynomialZ64) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
multiply(UnivariatePolynomialZp64) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
multiply(Rational<E>) - Method in class cc.redberry.rings.Rational
Multiply this by oth
multiply(Rational<E>, Rational<E>) - Method in class cc.redberry.rings.Rationals
 
multiply(E) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Multiplies this by the factor
multiply(E) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Multiplies this by the factor
multiply(E) - Method in class cc.redberry.rings.Rational
Multiply this by oth
multiply(E...) - Method in interface cc.redberry.rings.Ring
Multiplies the array of elements
multiply(E, long) - Method in interface cc.redberry.rings.Ring
Multiplies two elements
multiply(E, E) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
multiply(E, E) - Method in interface cc.redberry.rings.Ring
Multiplies two elements
multiply(I...) - Method in class cc.redberry.rings.ImageRing
 
multiply(I, I) - Method in class cc.redberry.rings.ImageRing
 
multiply(Iterable<E>) - Method in interface cc.redberry.rings.Ring
Multiplies the array of elements
multiply(Iterable<Poly>) - Method in interface cc.redberry.rings.poly.IPolynomial
Multiplies this by oth
multiply(Poly) - Method in interface cc.redberry.rings.poly.IPolynomial
Multiplies this by oth
multiply(Poly) - Method in class cc.redberry.rings.poly.multivar.Ideal
Returns the product of this and oth
multiply(Poly...) - Method in interface cc.redberry.rings.poly.IPolynomial
Multiplies this by oth
multiply(Poly, Poly) - Method in class cc.redberry.rings.poly.QuotientRing
 
multiply(Term) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Multiplies this by the monomial
multiply(Term, BigInteger) - Method in interface cc.redberry.rings.poly.multivar.IMonomialAlgebra
Multiplies term by a number
multiply(Term, Term) - Method in interface cc.redberry.rings.poly.multivar.IMonomialAlgebra
Multiplies two terms
MULTIPLY - Static variable in class cc.redberry.rings.io.Tokenizer
 
multiplyByBigInteger(BigInteger) - Method in interface cc.redberry.rings.poly.IPolynomial
Multiplies this by factor
multiplyByBigInteger(BigInteger) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
multiplyByBigInteger(BigInteger) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
multiplyByBigInteger(BigInteger) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
multiplyByBigInteger(BigInteger) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
multiplyByBigInteger(BigInteger) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
multiplyByDegreeVector(DegreeVector) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Multiplies this by the degree vector
multiplyByLC(MultivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
multiplyByLC(MultivariatePolynomialZp64) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
multiplyByLC(UnivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
multiplyByLC(Poly) - Method in interface cc.redberry.rings.poly.IPolynomial
Multiply this by the leading coefficient of other
multiplyByMonomial(int, int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Multiplies this by variable^exponent
multiplyIgnoreExponents() - Method in class cc.redberry.rings.FactorDecomposition
Multiply with no account for exponents
multiplyMutable(E, E) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
multiplyMutable(E, E) - Method in interface cc.redberry.rings.Ring
Multiplies two elements and destroys the initial content of a
multiplyParallel(BigInteger) - Method in class cc.redberry.rings.bigint.BigInteger
Multiplies this number by another using multiple threads if the numbers are sufficiently large.
multiplyToDouble(int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
multiplyToDouble(int[], int, int) - Static method in class cc.redberry.rings.util.ArraysUtil
 
MultivariateConversions - Class in cc.redberry.rings.poly.multivar
 
MultivariateDivision - Class in cc.redberry.rings.poly.multivar
Division with remainder of multivariate polynomials (multivariate reduction).
MultivariateFactorization - Class in cc.redberry.rings.poly.multivar
Factorization of multivariate polynomials.
MultivariateGCD - Class in cc.redberry.rings.poly.multivar
Multivariate polynomial GCD
MultivariateInterpolation - Class in cc.redberry.rings.poly.multivar
Multivariate interpolation
MultivariateInterpolation.Interpolation<E> - Class in cc.redberry.rings.poly.multivar
Updatable Newton interpolation
MultivariateInterpolation.InterpolationZp64 - Class in cc.redberry.rings.poly.multivar
Updatable Newton interpolation
multivariateLiftAutomaticLC(Poly, Poly[], HenselLifting.IEvaluation<Term, Poly>) - Static method in class cc.redberry.rings.poly.multivar.HenselLifting
Multivariate lift with automatic leading coefficient correction
multivariateLiftAutomaticLC(Poly, Poly[], HenselLifting.IEvaluation<Term, Poly>, int) - Static method in class cc.redberry.rings.poly.multivar.HenselLifting
Multivariate lift with automatic leading coefficient correction
MultivariatePolynomial<E> - Class in cc.redberry.rings.poly.multivar
 
MultivariatePolynomial.HornerForm<E> - Class in cc.redberry.rings.poly.multivar
A representation of multivariate polynomial specifically optimized for fast evaluation of given variables
MultivariatePolynomial.PrecomputedPowersHolder<E> - Class in cc.redberry.rings.poly.multivar
holds an array of precomputed powers
MultivariatePolynomialZp64 - Class in cc.redberry.rings.poly.multivar
Multivariate polynomial over Zp ring with the modulus in the range (0, 2^62) (see MachineArithmetic.MAX_SUPPORTED_MODULUS).
MultivariatePolynomialZp64.HornerFormZp64 - Class in cc.redberry.rings.poly.multivar
A representation of multivariate polynomial specifically optimized for fast evaluation of given variables
MultivariatePolynomialZp64.lPrecomputedPowers - Class in cc.redberry.rings.poly.multivar
cached powers used to save some time
MultivariatePolynomialZp64.lPrecomputedPowersHolder - Class in cc.redberry.rings.poly.multivar
holds an array of precomputed powers
MultivariateResultants - Class in cc.redberry.rings.poly.multivar
Polynomial resultants.
MultivariateRing<Poly extends AMultivariatePolynomial<?,​Poly>> - Class in cc.redberry.rings.poly
Ring of multivariate polynomials.
MultivariateRing(Poly) - Constructor for class cc.redberry.rings.poly.MultivariateRing
Creates ring of multivariate polynomials which support operations over multivariate polynomials of the type and number of variables same as of provided factory polynomial
MultivariateRing(int, Ring<E>) - Static method in class cc.redberry.rings.Rings
Ring of multivariate polynomials with specified number of variables over specified coefficient ring
MultivariateRing(int, Ring<E>, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.Rings
Ring of multivariate polynomials with specified number of variables over specified coefficient ring
MultivariateRing(Poly) - Static method in class cc.redberry.rings.Rings
Ring of multivariate polynomials with specified factory
MultivariateRingQ(int) - Static method in class cc.redberry.rings.Rings
Ring of multivariate polynomials over rationals (Q[x1, x2, ...])
MultivariateRingZ(int) - Static method in class cc.redberry.rings.Rings
Ring of multivariate polynomials over integers (Z[x1, x2, ...])
MultivariateRingZp(int, BigInteger) - Static method in class cc.redberry.rings.Rings
Ring of multivariate polynomials over Zp integers (Zp[x1, x2, ...]) with arbitrary large modulus
MultivariateRingZp64(int, long) - Static method in class cc.redberry.rings.Rings
Ring of multivariate polynomials over Zp machine integers (Zp[x1, x2, ...])
MultivariateRingZp64(int, long, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.Rings
Ring of multivariate polynomials over Zp integers (Zp[x1, x2, ...])
MultivariateRingZp64(int, IntegersZp64) - Static method in class cc.redberry.rings.Rings
Ring of multivariate polynomials over Zp integers (Zp[x1, x2, ...])
MultivariateRingZp64(int, IntegersZp64, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.Rings
Ring of multivariate polynomials over Zp integers (Zp[x1, x2, ...])
MultivariateSquareFreeFactorization - Class in cc.redberry.rings.poly.multivar
 

N

nanosecondsToString(long) - Static method in class cc.redberry.rings.util.TimeUnits
 
nBasisGenerators() - Method in class cc.redberry.rings.poly.multivar.Ideal
Returns the number of elements in Groebner basis
needParenthesisInSum(String) - Static method in interface cc.redberry.rings.io.IStringifier
If required to enclose with math parenthesis (e.g.
negate() - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is (-this), and whose scale is this.scale().
negate() - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is (-this).
negate() - Method in interface cc.redberry.rings.poly.IPolynomial
Negates this and returns
negate() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
 
negate() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
negate() - Method in class cc.redberry.rings.Rational
Negate this fraction
negate(int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
negate(long) - Method in class cc.redberry.rings.IntegersZp64
Negate mod operation
negate(long[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
negate(BigInteger) - Method in class cc.redberry.rings.Integers
 
negate(BigInteger) - Method in class cc.redberry.rings.IntegersZp
 
negate(BigInteger[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
negate(MathContext) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is (-this), with rounding according to the context settings.
negate(Monomial<E>) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebra
 
negate(MonomialZp64) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebraZp64
 
negate(Rational<E>) - Method in class cc.redberry.rings.Rationals
 
negate(E) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
negate(E) - Method in interface cc.redberry.rings.Ring
Negates the given element
negate(I) - Method in class cc.redberry.rings.ImageRing
 
negate(Poly) - Method in class cc.redberry.rings.poly.QuotientRing
 
negate(Term) - Method in interface cc.redberry.rings.poly.multivar.IMonomialAlgebra
Negates term
negateMutable(E) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
negateMutable(E) - Method in interface cc.redberry.rings.Ring
Negates the given element and destroys the initial content of element
NEGATIVE_ONE - Static variable in class cc.redberry.rings.bigint.BigInteger
The BigInteger constant -1.
NEGATIVE_TWO - Static variable in class cc.redberry.rings.bigint.BigInteger
The BigInteger constant negative two.
next() - Method in interface cc.redberry.rings.io.Tokenizer.CharacterStream
next char from this stream
nextInt(int, int) - Method in class cc.redberry.rings.util.RandomDataGenerator
 
nextLong(long, long) - Method in class cc.redberry.rings.util.RandomDataGenerator
 
nextPrime(int) - Static method in class cc.redberry.rings.primes.SmallPrimes
Return the smallest prime greater than or equal to n.
nextPrime(long) - Static method in class cc.redberry.rings.primes.BigPrimes
Return the smallest prime greater than or equal to n.
nextPrime(BigInteger) - Static method in class cc.redberry.rings.primes.BigPrimes
Return the smallest prime greater than or equal to n.
nextProbablePrime() - Method in class cc.redberry.rings.bigint.BigInteger
Returns the first integer greater than this BigInteger that is probably prime.
nextToken() - Method in class cc.redberry.rings.io.Tokenizer
Get the next token from stream
nNonZeroTerms() - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
Returns the number of non zero terms in this poly
NO_MINIMIZATION - Static variable in class cc.redberry.rings.poly.multivar.GroebnerBases
no any minimization at intermediate steps, just keep all track of generators as is
nontrivialQuotientQ(Poly, Poly) - Static method in class cc.redberry.rings.poly.multivar.MultivariateDivision
Tests whether there is nontrivial quotient dividend / divider
norm(E) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
Gives the norm of field extension element (it is always belongs to the base field)
norm1(UnivariatePolynomial<BigInteger>) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Returns L1 norm of the polynomial, i.e.
norm2(UnivariatePolynomial<BigInteger>) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Returns L2 norm of the polynomial, i.e.
norm2Double(UnivariatePolynomial<BigInteger>) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Returns L2 norm of the poly, i.e.
normal() - Method in class cc.redberry.rings.Rational
Reduces this rational to normal form by doing division with remainder, that is if numerator = div * denominator + rem then the array (div, rem/denominator) will be returned.
normalForm(Poly) - Method in class cc.redberry.rings.poly.multivar.Ideal
Reduces poly modulo this ideal
normalForm(Poly) - Method in class cc.redberry.rings.poly.QuotientRing
 
normalizer(E) - Method in class cc.redberry.rings.poly.AlgebraicNumberField
Gives an element C(element) of this field extension with the property that element * C(element) is in the base field.
normalSelectionStrategy(Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Normal selection strategy: chose syzygy with the less lcm(fi.lt(), fj.lt()) with respect to monomialOrder
normMax() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
normOfPolynomial(MultivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
Gives the norm of multivariate polynomial over this field extension, which is always a polynomial with the coefficients from the base field.
normOfPolynomial(UnivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
Gives the norm of univariate polynomial over this field extension, which is always a polynomial with the coefficients from the base field
not() - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is (~this).
NullstellensatzCertificate(List<Poly>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerMethods
Computes Nullstellensatz certificate for a given list of polynomials assuming that they have no common zeros (or equivalently assuming that the ideal formed by the list is trivial).
NullstellensatzCertificate(List<Poly>, boolean) - Static method in class cc.redberry.rings.poly.multivar.GroebnerMethods
Computes Nullstellensatz certificate for a given list of polynomials assuming that they have no common zeros (or equivalently assuming that the ideal formed by the list is trivial).
NullstellensatzSolver(List<Poly>, Poly, boolean) - Static method in class cc.redberry.rings.poly.multivar.GroebnerMethods
Tries to find solution of the equation S_1 * f_1 + ... + S_n * f_n = g for given f_i and g and unknown S_i by transforming to a system of linear equations with unknown coefficients of S_i.
numberOfPoints() - Method in class cc.redberry.rings.poly.multivar.MultivariateInterpolation.Interpolation
Returns the number of interpolation points used
numberOfPoints() - Method in class cc.redberry.rings.poly.multivar.MultivariateInterpolation.InterpolationZp64
Returns the number of interpolation points used
numberOfPoints() - Method in class cc.redberry.rings.poly.univar.UnivariateInterpolation.Interpolation
Returns the number of interpolation points used
numberOfPoints() - Method in class cc.redberry.rings.poly.univar.UnivariateInterpolation.InterpolationZp64
Returns the number of interpolation points used
numerator - Variable in class cc.redberry.rings.poly.multivar.GroebnerBases.HilbertSeries
Reduced numerator (GCD is cancelled)
numerator() - Method in class cc.redberry.rings.Rational
Numerator of this rational
numeratorExact() - Method in class cc.redberry.rings.Rational
Numerator of this rational
nUsedVariables() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns the number of really used variables (those which are not units)
nVariables - Variable in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
The number of variables
nVariables() - Method in interface cc.redberry.rings.poly.IPolynomialRing
Number of polynomial variables
nVariables() - Method in class cc.redberry.rings.poly.MultipleFieldExtension
 
nVariables() - Method in class cc.redberry.rings.poly.multivar.DegreeVector
Returns number of variables
nVariables() - Method in class cc.redberry.rings.poly.MultivariateRing
 
nVariables() - Method in class cc.redberry.rings.poly.QuotientRing
 
nVariables() - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
nVariables() - Method in class cc.redberry.rings.poly.UnivariateRing
 

O

of(Ring<E>, E...) - Static method in class cc.redberry.rings.FactorDecomposition
Factor decomposition with specified factors and exponents
of(Ring<E>, E, List<E>, TIntArrayList) - Static method in class cc.redberry.rings.FactorDecomposition
Factor decomposition with specified factors and exponents
of(Ring<E>, Collection<E>) - Static method in class cc.redberry.rings.FactorDecomposition
Factor decomposition with specified factors and exponents
of(Collection<Poly>) - Static method in class cc.redberry.rings.poly.PolynomialFactorDecomposition
Factor decomposition with specified factors and exponents
of(Poly) - Static method in class cc.redberry.rings.poly.PolynomialFactorDecomposition
 
of(Poly...) - Static method in class cc.redberry.rings.poly.PolynomialFactorDecomposition
Factor decomposition with specified factors and exponents
of(Poly, List<Poly>, TIntArrayList) - Static method in class cc.redberry.rings.poly.PolynomialFactorDecomposition
Factor decomposition with specified factors and exponents
of(Poly, Poly) - Static method in class cc.redberry.rings.poly.PolynomialFactorDecomposition
 
of(Poly, Poly, Poly) - Static method in class cc.redberry.rings.poly.PolynomialFactorDecomposition
 
one() - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
Creates unit polynomial
one(int, IntegersZp64, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Creates unit polynomial.
one(int, Ring<E>, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Creates unit polynomial.
one(long) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
Creates unit polynomial
one(IntegersZp64) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
Creates unit polynomial
one(Ring<E>) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Creates unit polynomial over specified ring
one(Ring<E>) - Static method in class cc.redberry.rings.Rational
Constructs one
ONE - Static variable in class cc.redberry.rings.bigint.BigDecimal
The value 1, with a scale of 0.
ONE - Static variable in class cc.redberry.rings.bigint.BigInteger
The BigInteger constant one.
optimalOrder(List<Poly>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Deduce the optimal order for GB algorithms
or(long[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
or(long[], int) - Static method in class cc.redberry.rings.util.ArraysUtil
 
or(long[], int, int) - Static method in class cc.redberry.rings.util.ArraysUtil
 
or(BigInteger) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is (this | val).
ordering - Variable in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
The ordering
ordering - Variable in class cc.redberry.rings.poly.multivar.Ideal
monomial order used for standard basis
ordering() - Method in class cc.redberry.rings.poly.MultivariateRing
 

P

PairedIterator<Term1 extends AMonomial<Term1>,​Poly1 extends AMultivariatePolynomial<Term1,​Poly1>,​Term2 extends AMonomial<Term2>,​Poly2 extends AMultivariatePolynomial<Term2,​Poly2>> - Class in cc.redberry.rings.poly.multivar
Iterator over a pair of polynomials
PairedIterator(Poly1, Poly2) - Constructor for class cc.redberry.rings.poly.multivar.PairedIterator
 
parallelStream() - Method in class cc.redberry.rings.util.ListWrapper
 
parse(Tokenizer) - Method in class cc.redberry.rings.io.Coder
Parse stream of tokens into ring element
parse(String) - Method in class cc.redberry.rings.ImageRing
 
parse(String) - Method in class cc.redberry.rings.io.Coder
Parse string
parse(String) - Method in interface cc.redberry.rings.io.IParser
Parse string into Element
parse(String) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Deprecated.
use #parse(string, ring, ordering, variables)
parse(String) - Method in class cc.redberry.rings.poly.QuotientRing
 
parse(String) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
parse(String) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
Parse string into polynomial
parse(String) - Method in interface cc.redberry.rings.Ring
Parse string into ring element
parse(String[], Ring<E>, String[]) - Static method in class cc.redberry.rings.poly.multivar.Ideal
Shortcut for parse
parse(String[], Ring<E>, Comparator<DegreeVector>, String[]) - Static method in class cc.redberry.rings.poly.multivar.Ideal
Shortcut for parse
parse(String, long) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
parse(String, IntegersZp64) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Deprecated.
use #parse(string, ring, ordering, variables)
parse(String, IntegersZp64) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
parse(String, IntegersZp64, String) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
Parse string into polynomial
parse(String, IntegersZp64, String...) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Parse multivariate polynomial from string.
parse(String, IntegersZp64, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Deprecated.
use #parse(string, ring, ordering, variables)
parse(String, IntegersZp64, Comparator<DegreeVector>, String...) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Parse multivariate polynomial from string.
parse(String, Ring<E>) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Deprecated.
use #parse(string, ring, ordering, variables)
parse(String, Ring<E>) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
parse(String, Ring<E>, String) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Parse string into polynomial
parse(String, Ring<E>, String...) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Parse multivariate polynomial from string.
parse(String, Ring<E>, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Deprecated.
use #parse(string, ring, ordering, variables)
parse(String, Ring<E>, Comparator<DegreeVector>, String...) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Parse multivariate polynomial from string.
parse(String, String...) - Method in interface cc.redberry.rings.poly.IPolynomialRing
Parse poly from string using specified variables representation
parse(String, String...) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Parse multivariate Z[X] polynomial from string.
parse(String, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Deprecated.
use #parse(string, ring, ordering, variables)
parse(String, Comparator<DegreeVector>, String...) - Static method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Parse multivariate Z[X] polynomial from string.
parsePoly(String) - Method in interface cc.redberry.rings.poly.IPolynomial
Deprecated.
use Coder to parse polynomials
parsePoly(String) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Deprecated.
parsePoly(String) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Deprecated.
parsePoly(String) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
parsePoly(String) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
parsePoly(String) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
perfectPowerBase() - Method in class cc.redberry.rings.ARing
 
perfectPowerBase() - Method in class cc.redberry.rings.ImageRing
 
perfectPowerBase() - Method in class cc.redberry.rings.IntegersZp64
Returns base if modulus == base^exponent, and -1 otherwisec
perfectPowerBase() - Method in class cc.redberry.rings.Rationals
 
perfectPowerBase() - Method in interface cc.redberry.rings.Ring
Returns base so that cardinality == base^exponent or null if cardinality is not finite
perfectPowerBaseDomain() - Method in class cc.redberry.rings.IntegersZp
Returns ring for ARing.perfectPowerBase() or this if modulus is not a perfect power
perfectPowerBaseDomain() - Method in class cc.redberry.rings.IntegersZp64
Returns ring for IntegersZp64.perfectPowerBase() or this if modulus is not a perfect power
perfectPowerDecomposition(long) - Static method in class cc.redberry.rings.poly.MachineArithmetic
Tests whether n is a perfect power n == a^b and returns {a, b} if so and null otherwise
perfectPowerDecomposition(BigInteger) - Static method in class cc.redberry.rings.bigint.BigIntegerUtil
Tests whether n is a perfect power n == a^b and returns {a, b} if so and null otherwise
perfectPowerExponent() - Method in class cc.redberry.rings.ARing
 
perfectPowerExponent() - Method in class cc.redberry.rings.ImageRing
 
perfectPowerExponent() - Method in class cc.redberry.rings.IntegersZp64
Returns exponent if modulus == base^exponent, and -1 otherwisec
perfectPowerExponent() - Method in class cc.redberry.rings.Rationals
 
perfectPowerExponent() - Method in interface cc.redberry.rings.Ring
Returns exponent so that cardinality == base^exponent or null if cardinality is not finite
plus() - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is (+this), and whose scale is this.scale().
plus(MathContext) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is (+this), with rounding according to the context settings.
PLUS - Static variable in class cc.redberry.rings.io.Tokenizer
 
PollardP1(BigInteger, long) - Static method in class cc.redberry.rings.primes.BigPrimes
Pollards's p-1 algorithm.
PollardRho(BigInteger, int, RandomGenerator) - Static method in class cc.redberry.rings.primes.BigPrimes
Pollards's rho algorithm (random search version).
PollardRho(BigInteger, long) - Static method in class cc.redberry.rings.primes.BigPrimes
Pollards's rho algorithm.
polyAddMod(T, T, T, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialArithmetic
Returns the remainder of the sum (m1 + m2) and polyModulus.
polyAddMod(T, T, T, UnivariateDivision.InverseModMonomial<T>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialArithmetic
Returns the remainder of the sum (m1 + m2) and polyModulus using fast algorithm for pre-conditioned modulus.
polyMod() - Method in class cc.redberry.rings.poly.univar.HenselLifting.bLinearLift
 
polyMod() - Method in class cc.redberry.rings.poly.univar.HenselLifting.bQuadraticLift
 
polyMod() - Method in interface cc.redberry.rings.poly.univar.HenselLifting.LiftableQuintet
Returns initial Z[x] polynomial modulo lifted modulus
polyMod() - Method in class cc.redberry.rings.poly.univar.HenselLifting.lLinearLift
 
polyMod() - Method in class cc.redberry.rings.poly.univar.HenselLifting.lQuadraticLift
 
polyMod(T, T, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialArithmetic
Returns the remainder of dividend and polyModulus.
polyMod(T, T, UnivariateDivision.InverseModMonomial<T>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialArithmetic
Returns the remainder of dividend and polyModulus using fast algorithm for pre-conditioned modulus.
polyMultiplyMod(T, T, T, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialArithmetic
Returns the remainder of the product (m1 * m2) and polyModulus.
polyMultiplyMod(T, T, T, UnivariateDivision.InverseModMonomial<T>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialArithmetic
Returns the remainder of the product (m1 * m2) and polyModulus using fast algorithm for pre-conditioned modulus.
polyNegateMod(T, T, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialArithmetic
Returns the remainder of the negated poly -m1 and polyModulus.
polyNegateMod(T, T, UnivariateDivision.InverseModMonomial<T>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialArithmetic
Returns the remainder of the negated poly -m1 and polyModulus using fast algorithm for pre-conditioned modulus.
PolynomialCollector(Ring<E>) - Constructor for class cc.redberry.rings.poly.univar.UnivariatePolynomial.PolynomialCollector
 
PolynomialCollector(Supplier<Poly>) - Constructor for class cc.redberry.rings.poly.multivar.AMultivariatePolynomial.PolynomialCollector
 
PolynomialExtendedGCD(T, T) - Static method in class cc.redberry.rings.poly.PolynomialMethods
Computes [gcd(a,b), s, t] such that s * a + t * b = gcd(a, b).
PolynomialExtendedGCD(T, T) - Static method in class cc.redberry.rings.poly.univar.UnivariateGCD
Computes [gcd(a,b), s, t] such that s * a + t * b = gcd(a, b).
PolynomialFactorDecomposition<Poly extends IPolynomial<Poly>> - Class in cc.redberry.rings.poly
Factor decomposition of element.
PolynomialFirstBezoutCoefficient(T, T) - Static method in class cc.redberry.rings.poly.univar.UnivariateGCD
Returns array of [gcd(a,b), s] such that s * a + t * b = gcd(a, b)
PolynomialGCD(Iterable<Poly>) - Static method in class cc.redberry.rings.poly.multivar.MultivariateGCD
Calculates greatest common divisor of the array of polynomials
PolynomialGCD(Iterable<Poly>) - Static method in class cc.redberry.rings.poly.PolynomialMethods
Compute GCD of collection of polynomials.
PolynomialGCD(Iterable<T>) - Static method in class cc.redberry.rings.poly.univar.UnivariateGCD
Returns GCD of a list of polynomials.
PolynomialGCD(Poly...) - Static method in class cc.redberry.rings.poly.multivar.MultivariateGCD
Calculates greatest common divisor of the array of polynomials
PolynomialGCD(Poly...) - Static method in class cc.redberry.rings.poly.PolynomialMethods
Compute GCD of array of polynomials.
PolynomialGCD(Poly, Poly) - Static method in class cc.redberry.rings.poly.multivar.MultivariateGCD
Calculates greatest common divisor of two multivariate polynomials
PolynomialGCD(Poly, Poly) - Static method in class cc.redberry.rings.poly.PolynomialMethods
Compute GCD of two polynomials.
PolynomialGCD(T...) - Static method in class cc.redberry.rings.poly.univar.UnivariateGCD
Returns GCD of a list of polynomials.
PolynomialGCD(T, T) - Static method in class cc.redberry.rings.poly.univar.UnivariateGCD
Calculates the GCD of two polynomials.
PolynomialGCDinGF(Poly, Poly) - Static method in class cc.redberry.rings.poly.multivar.MultivariateGCD
Calculates greatest common divisor of two multivariate polynomials over finite fields
PolynomialGCDinNumberField(MultivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>>, MultivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>>) - Static method in class cc.redberry.rings.poly.multivar.MultivariateGCD
Calculates greatest common divisor of two multivariate polynomials over Z
PolynomialGCDInNumberField(UnivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>>, UnivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>>) - Static method in class cc.redberry.rings.poly.univar.UnivariateGCD
Computes GCD via Langemyr & Mccallum modular algorithm over algebraic number field
PolynomialGCDinRingOfIntegersOfNumberField(MultivariatePolynomial<UnivariatePolynomial<BigInteger>>, MultivariatePolynomial<UnivariatePolynomial<BigInteger>>) - Static method in class cc.redberry.rings.poly.multivar.MultivariateGCD
Calculates greatest common divisor of two multivariate polynomials over Z
PolynomialGCDInRingOfIntegersOfNumberField(UnivariatePolynomial<UnivariatePolynomial<BigInteger>>, UnivariatePolynomial<UnivariatePolynomial<BigInteger>>) - Static method in class cc.redberry.rings.poly.univar.UnivariateGCD
Computes some GCD associate via Langemyr & Mccallum modular algorithm over algebraic integers
PolynomialGCDinZ(MultivariatePolynomial<BigInteger>, MultivariatePolynomial<BigInteger>) - Static method in class cc.redberry.rings.poly.multivar.MultivariateGCD
Calculates greatest common divisor of two multivariate polynomials over Z
PolynomialMethods - Class in cc.redberry.rings.poly
High-level methods for polynomials.
PolynomialRing(Poly) - Static method in class cc.redberry.rings.Rings
Generic factory for polynomial ring
polyPow(T, int, boolean, TIntObjectHashMap<T>) - Static method in class cc.redberry.rings.poly.PolynomialMethods
Returns base in a power of non-negative exponent
polyPow(T, long) - Static method in class cc.redberry.rings.poly.PolynomialMethods
Returns base in a power of non-negative exponent
polyPow(T, long, boolean) - Static method in class cc.redberry.rings.poly.PolynomialMethods
Returns base in a power of non-negative exponent
polyPow(T, long, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialArithmetic
Returns base in a power of non-negative exponent
polyPow(T, BigInteger) - Static method in class cc.redberry.rings.poly.PolynomialMethods
Returns base in a power of non-negative exponent
polyPow(T, BigInteger, boolean) - Static method in class cc.redberry.rings.poly.PolynomialMethods
Returns base in a power of non-negative exponent.
polyPowers(T, T, UnivariateDivision.InverseModMonomial<T>, int) - Static method in class cc.redberry.rings.poly.univar.ModularComposition
Returns poly^{i} mod polyModulus for i in [0...nIterations]
polyPowMod(T, long, T, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialArithmetic
Returns base in a power of non-negative exponent modulo polyModulus
polyPowMod(T, long, T, UnivariateDivision.InverseModMonomial<T>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialArithmetic
Returns base in a power of non-negative exponent modulo polyModulus
polyPowMod(T, BigInteger, T, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialArithmetic
Returns base in a power of non-negative exponent modulo polyModulus
polyPowMod(T, BigInteger, T, UnivariateDivision.InverseModMonomial<T>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialArithmetic
Returns base in a power of non-negative exponent modulo polyModulus
polyPowNumFieldCfBound(BigInteger, BigInteger, int, int) - Static method in class cc.redberry.rings.poly.univar.UnivariateResultants
 
polyRing - Variable in class cc.redberry.rings.io.Coder
auxiliary polynomial ring
polySubtractMod(T, T, T, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialArithmetic
Returns the remainder of the difference (m1 - m2) and polyModulus.
polySubtractMod(T, T, T, UnivariateDivision.InverseModMonomial<T>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariatePolynomialArithmetic
Returns the remainder of the difference (m1 - m2) and polyModulus using fast algorithm for pre-conditioned modulus.
polyToElement - Variable in class cc.redberry.rings.io.Coder
convert polynomial to base ring elements
pow(int) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is (thisn), The power is computed exactly, to unlimited precision.
pow(int) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is (thisexponent).
pow(int) - Method in class cc.redberry.rings.poly.multivar.Ideal
Returns this in a power of exponent
pow(int) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64.lPrecomputedPowers
 
pow(int) - Method in class cc.redberry.rings.Rational
Raise this in a power exponent
pow(int, int) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64.lPrecomputedPowersHolder
 
pow(int, MathContext) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is (thisn).
pow(long) - Method in class cc.redberry.rings.Rational
Raise this in a power exponent
pow(long, long) - Static method in class cc.redberry.rings.bigint.BigIntegerUtil
Returns base in a power of e (non negative)
pow(BigInteger) - Method in class cc.redberry.rings.Rational
Raise this in a power exponent
pow(BigInteger, int) - Static method in class cc.redberry.rings.bigint.BigIntegerUtil
Returns base in a power of e (non negative)
pow(BigInteger, int) - Method in class cc.redberry.rings.Integers
 
pow(BigInteger, long) - Static method in class cc.redberry.rings.bigint.BigIntegerUtil
Returns base in a power of e (non negative)
pow(BigInteger, long) - Method in class cc.redberry.rings.Integers
 
pow(BigInteger, BigInteger) - Static method in class cc.redberry.rings.bigint.BigIntegerUtil
Returns base in a power of e (non negative)
pow(BigInteger, BigInteger) - Method in class cc.redberry.rings.Integers
 
pow(Monomial<E>, int) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebra
 
pow(MonomialZp64, int) - Method in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebraZp64
 
pow(E, int) - Method in interface cc.redberry.rings.Ring
Returns base in a power of exponent (non negative)
pow(E, long) - Method in interface cc.redberry.rings.Ring
Returns base in a power of exponent (non negative)
pow(E, BigInteger) - Method in interface cc.redberry.rings.Ring
Returns base in a power of exponent (non negative)
pow(I, int) - Method in class cc.redberry.rings.ImageRing
 
pow(I, long) - Method in class cc.redberry.rings.ImageRing
 
pow(I, BigInteger) - Method in class cc.redberry.rings.ImageRing
 
pow(Term, int) - Method in interface cc.redberry.rings.poly.multivar.IMonomialAlgebra
Raise term in a power of exponent
powMod(long, long) - Method in class cc.redberry.rings.IntegersZp64
Returns base in a power of non-negative e modulo magic.modulus
powMod(long, long, long) - Static method in class cc.redberry.rings.poly.MachineArithmetic
Returns base in a power of non-negative e modulo modulus
powModSigned(long, long, FastDivision.Magic) - Static method in class cc.redberry.rings.poly.MachineArithmetic
Returns base in a power of non-negative e modulo magic.modulus
powModulusMod(UnivariatePolynomial<E>, UnivariatePolynomial<E>, UnivariateDivision.InverseModMonomial<UnivariatePolynomial<E>>, ArrayList<UnivariatePolynomial<E>>) - Static method in class cc.redberry.rings.poly.univar.ModularComposition
Returns poly^modulus mod polyModulus using precomputed monomial powers x^{i*modulus} mod polyModulus for i in [0...degree(poly)]
powModulusMod(UnivariatePolynomialZp64, UnivariatePolynomialZp64, UnivariateDivision.InverseModMonomial<UnivariatePolynomialZp64>, ArrayList<UnivariatePolynomialZp64>) - Static method in class cc.redberry.rings.poly.univar.ModularComposition
Returns poly^modulus mod polyModulus using precomputed monomial powers x^{i*modulus} mod polyModulus for i in [0...degree(poly)]
powModulusMod(T, T, UnivariateDivision.InverseModMonomial<T>, ArrayList<T>) - Static method in class cc.redberry.rings.poly.univar.ModularComposition
Returns poly^modulus mod polyModulus using precomputed monomial powers x^{i*modulus} mod polyModulus for i in [0...degree(poly)]
powModUnsigned(long, long, FastDivision.Magic) - Static method in class cc.redberry.rings.poly.MachineArithmetic
Returns base in a power of non-negative e modulo magic.modulus
precision() - Method in class cc.redberry.rings.bigint.BigDecimal
Returns the precision of this BigDecimal.
PrecomputedPowersHolder(Ring<E>, MultivariatePolynomial.PrecomputedPowers<E>[]) - Constructor for class cc.redberry.rings.poly.multivar.MultivariatePolynomial.PrecomputedPowersHolder
 
primeFactors(int) - Static method in class cc.redberry.rings.primes.SmallPrimes
Prime factors decomposition.
primeFactors(long) - Static method in class cc.redberry.rings.primes.BigPrimes
Prime factors decomposition.
primeFactors(BigInteger) - Static method in class cc.redberry.rings.primes.BigPrimes
Prime factors decomposition.
PrimesIterator - Class in cc.redberry.rings.primes
Iterator over prime numbers.
PrimesIterator() - Constructor for class cc.redberry.rings.primes.PrimesIterator
Create iterator over prime numbers starting from 2.
PrimesIterator(long) - Constructor for class cc.redberry.rings.primes.PrimesIterator
Create iterator over prime numbers starting from the prime closest to the specified value (prime >= from)
primitive() - Method in class cc.redberry.rings.poly.PolynomialFactorDecomposition
Makes each factor primitive (moving contents to the PolynomialFactorDecomposition.unit(Poly))
primitivePart() - Method in interface cc.redberry.rings.poly.IPolynomial
Reduces poly to its primitive part (primitive part will always have positive l.c.)
primitivePart() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
primitivePart() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
primitivePart() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
primitivePart(int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Gives primitive part of this considered as R[variable][other_variables]
primitivePart(int) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
primitivePart(int) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
primitivePartSameSign() - Method in interface cc.redberry.rings.poly.IPolynomial
Reduces poly to its primitive part, so that primitive part will have the same signum as the initial poly
primitivePartSameSign() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
primitivePartSameSign() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
primitivePartSameSign() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
PrimitivePRS(UnivariatePolynomial<E>, UnivariatePolynomial<E>) - Static method in class cc.redberry.rings.poly.univar.UnivariateResultants
Computes polynomial remainder sequence using primitive division algorithm
probablePrime(int, Random) - Static method in class cc.redberry.rings.bigint.BigInteger
Returns a positive BigInteger that is probably prime, with the specified bitLength.
probablyAlgebraicallyDependentQ(List<Poly>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerMethods
Returns true if a given set of polynomials is probably algebraically dependent or false otherwise (which means that the given set is certainly independent).
product(Comparator<DegreeVector>[], int[]) - Static method in class cc.redberry.rings.poly.multivar.MonomialOrder
Block product of orderings
product(Comparator<DegreeVector>, int, Comparator<DegreeVector>, int) - Static method in class cc.redberry.rings.poly.multivar.MonomialOrder
Block product of orderings
pseudoDivideAndRemainder(UnivariatePolynomial<E>, UnivariatePolynomial<E>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Returns quotient and remainder using pseudo division.
pseudoDivideAndRemainder(UnivariatePolynomialZ64, UnivariatePolynomialZ64, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Returns quotient and remainder using pseudo division.
pseudoDivideAndRemainder(Poly, Poly, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Returns quotient and remainder of dividend and divider using pseudo division.
PseudoPRS(UnivariatePolynomial<E>, UnivariatePolynomial<E>) - Static method in class cc.redberry.rings.poly.univar.UnivariateResultants
Computes polynomial remainder sequence using pseudo division algorithm
pseudoRemainder(Poly, Collection<Poly>) - Static method in class cc.redberry.rings.poly.multivar.MultivariateDivision
Performs multivariate division with remainder and rerurns the remainder.
pseudoRemainder(Poly, Poly) - Static method in class cc.redberry.rings.poly.multivar.MultivariateDivision
Performs multivariate division with remainder and rerurns the remainder.
pseudoRemainder(Poly, Poly...) - Static method in class cc.redberry.rings.poly.multivar.MultivariateDivision
Performs multivariate pseudo division with remainder and returns the remainder.
put(Term) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Puts monomial to this polynomial replacing the previous entry if was
pVariables - Variable in class cc.redberry.rings.io.Coder
map variableName -> variableIndex (if it is a polynomial variable)

Q

Q - Static variable in class cc.redberry.rings.Rings
Field of rationals (Q)
QuadraticSieve(BigInteger, int) - Static method in class cc.redberry.rings.primes.BigPrimes
 
quickSort(int[], int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified target array of ints into ascending numerical order and simultaneously permutes the coSort ints array in the same way as the target array.
quickSort(int[], int[], IntComparator) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified target array of ints according to IntComparator and simultaneously permutes the coSort Objects array in the same way as the target array.
quickSort(int[], int, int, int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified range of the specified target array of ints into ascending numerical order and simultaneously permutes the coSort ints array in the same way as the target array.
quickSort(int[], int, int, int[], IntComparator) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified range of the specified target array of ints according to IntComparator and simultaneously permutes the coSort Objects array in the same way as the target array.
quickSort(int[], int, int, long[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified range of the specified target array of ints into ascending numerical order and simultaneously permutes the coSort longs array in the same way as the target array.
quickSort(int[], int, int, IntComparator) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified range of the specified target array of ints into order specified by IntComparator using quicksort.
quickSort(int[], int, int, Object[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified range of the specified target array of ints into ascending numerical order and simultaneously permutes the coSort Objects array in the same way as the target array.
quickSort(int[], long[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified target array of ints into ascending numerical order and simultaneously permutes the coSort longs array in the same way as the target array.
quickSort(int[], IntComparator) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified range of the specified target array of ints into order specified by IntComparator using quicksort.
quickSort(int[], Object[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified target array of ints into ascending numerical order and simultaneously permutes the coSort Objects array in the same way as the target array.
quickSort(long[], int, int, long[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified range of the specified target array of ints into ascending numerical order and simultaneously permutes the coSort longs array in the same way as the target array.
quickSort(long[], long[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified target array of ints into ascending numerical order and simultaneously permutes the coSort longs array in the same way as the target array.
quickSort(short[], int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified target array of shorts into ascending numerical order and simultaneously permutes the coSort ints array in the same way as the target array.
quickSort(short[], int, int, int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified range of the specified target array of ints into ascending numerical order and simultaneously permutes the coSort ints array in the same way as the target array.
quickSort(T[], int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified target array of objects into ascending order, according to the natural ordering of its elements and simultaneously permutes the coSort objects array in the same way then specified target array.
quickSort(T[], int, int, int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified target array of objects into ascending order, according to the natural ordering of its elements and simultaneously permutes the coSort objects array in the same way then specified target array.
quickSort(T[], int, int, Object[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified target array of objects into ascending order, according to the natural ordering of its elements and simultaneously permutes the coSort objects array in the same way then specified target array.
quickSort(T[], Object[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified target array of objects into ascending order, according to the natural ordering of its elements and simultaneously permutes the coSort objects array in the same way then specified target array.
quickSort1(int[], int, int, int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
This method is the same as ArraysUtil.quickSort(int[], int, int, int[]), but without range checking and toIndex -> length (see params).
quickSort1(int[], int, int, long[]) - Static method in class cc.redberry.rings.util.ArraysUtil
This method is the same as ) , but without range checking.
quickSort1(int[], int, int, IntComparator) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified range of the specified target array of ints into order specified by IntComparator using quicksort.
quickSort1(int[], int, int, Object[]) - Static method in class cc.redberry.rings.util.ArraysUtil
This method is the same as ) , but without range checking.
quickSort1(long[], int, int, long[]) - Static method in class cc.redberry.rings.util.ArraysUtil
This method is the same as ) , but without range checking.
quickSort1(short[], int, int, int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
This method is the same as ArraysUtil.quickSort(int[], int, int, int[]), but without range checking and toIndex -> length (see params).
quickSort1(T[], int, int, int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
This method is the same as ArraysUtil.quickSort(Comparable[], int, int, Object[]), but without range checking.
quickSort1(T[], int, int, Object[]) - Static method in class cc.redberry.rings.util.ArraysUtil
This method is the same as ArraysUtil.quickSort(Comparable[], int, int, Object[]), but without range checking.
quickSortP(int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified array and returns the resulting permutation
quickSortP(short[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
quotient(Ideal<Term, Poly>) - Method in class cc.redberry.rings.poly.multivar.Ideal
Returns the quotient this : oth
quotient(UnivariatePolynomial<E>, UnivariatePolynomial<E>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Returns quotient of dividend and divider.
quotient(UnivariatePolynomialZ64, UnivariatePolynomialZ64, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Returns quotient dividend/ divider
quotient(UnivariatePolynomialZp64, UnivariatePolynomialZp64, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Returns quotient of dividing dividend by divider.
quotient(E, E) - Method in interface cc.redberry.rings.Ring
Returns the quotient of dividend / divider
quotient(I, I) - Method in class cc.redberry.rings.ImageRing
 
quotient(Poly) - Method in class cc.redberry.rings.poly.multivar.Ideal
Returns the quotient this : oth
quotient(Poly, Poly, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Returns quotient dividend/ divider or null if exact division o
quotientFast(UnivariatePolynomial<E>, UnivariatePolynomial<E>, UnivariateDivision.InverseModMonomial<UnivariatePolynomial<E>>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Fast quotient using Newton's iteration.
quotientFast(UnivariatePolynomialZp64, UnivariatePolynomialZp64, UnivariateDivision.InverseModMonomial<UnivariatePolynomialZp64>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Fast quotient using Newton's iteration.
QuotientRing<Term extends AMonomial<Term>,​Poly extends AMultivariatePolynomial<Term,​Poly>> - Class in cc.redberry.rings.poly
Multivariate quotient ring
QuotientRing(MultivariateRing<Poly>, Ideal<Term, Poly>) - Constructor for class cc.redberry.rings.poly.QuotientRing
 
QuotientRing(MultivariateRing<Poly>, Ideal<Term, Poly>) - Static method in class cc.redberry.rings.Rings
Quotient ring baseRing/<ideal>
quotients - Variable in class cc.redberry.rings.poly.univar.UnivariateResultants.APolynomialRemainderSequence
Quotients arised in PRS

R

radicalContains(Poly) - Method in class cc.redberry.rings.poly.multivar.Ideal
Tests whether poly belongs to the radical of this
raiseExponents(long) - Method in class cc.redberry.rings.FactorDecomposition
Multiply each exponent by a given factor
randomArray(int, Ring<E>, Function<RandomGenerator, E>, RandomGenerator) - Static method in class cc.redberry.rings.poly.univar.RandomUnivariatePolynomials
Creates random array of length degree + 1 with elements from the specified ring
randomArray(int, Ring<E>, RandomGenerator) - Static method in class cc.redberry.rings.poly.univar.RandomUnivariatePolynomials
Creates random array of length degree + 1 with elements from the specified ring
randomBigArray(int, BigInteger, RandomGenerator) - Static method in class cc.redberry.rings.poly.univar.RandomUnivariatePolynomials
Creates random array of length degree + 1 with elements bounded by bound (by absolute value).
randomBigIntegerArray(int, BigInteger, BigInteger, RandomGenerator) - Static method in class cc.redberry.rings.util.RandomUtil
Creates random array of length degree + 1 with elements bounded by bound (by absolute value).
RandomDataGenerator - Class in cc.redberry.rings.util
 
RandomDataGenerator(RandomGenerator) - Constructor for class cc.redberry.rings.util.RandomDataGenerator
 
randomElement() - Method in class cc.redberry.rings.IntegersZp64
Returns a random element from this ring
randomElement() - Method in interface cc.redberry.rings.Ring
Returns a random element from this ring
randomElement(int, int) - Method in class cc.redberry.rings.poly.MultivariateRing
Generates random multivariate polynomial
randomElement(int, int, RandomGenerator) - Method in class cc.redberry.rings.poly.MultivariateRing
Generates random multivariate polynomial
randomElement(int, int, RandomGenerator) - Method in class cc.redberry.rings.poly.UnivariateRing
Gives a random univariate polynomial with the degree randomly picked from minDegree (inclusive) to maxDegree (exclusive)
randomElement(int, RandomGenerator) - Method in class cc.redberry.rings.poly.UnivariateRing
Gives a random univariate polynomial with the specified degree
randomElement(RandomGenerator) - Method in class cc.redberry.rings.ImageRing
 
randomElement(RandomGenerator) - Method in class cc.redberry.rings.IntegersZp
 
randomElement(RandomGenerator) - Method in class cc.redberry.rings.IntegersZp64
Returns a random element from this ring
randomElement(RandomGenerator) - Method in class cc.redberry.rings.poly.MultivariateRing
Gives a random constant polynomial.
randomElement(RandomGenerator) - Method in class cc.redberry.rings.poly.QuotientRing
 
randomElement(RandomGenerator) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
randomElement(RandomGenerator) - Method in class cc.redberry.rings.poly.UnivariateRing
Gives a random univariate polynomial with the degree randomly picked from UnivariateRing.MIN_DEGREE_OF_RANDOM_POLY (inclusive) to UnivariateRing.MAX_DEGREE_OF_RANDOM_POLY (exclusive)
randomElement(RandomGenerator) - Method in class cc.redberry.rings.Rationals
 
randomElement(RandomGenerator) - Method in interface cc.redberry.rings.Ring
Returns a random element from this ring
randomElementTree() - Method in interface cc.redberry.rings.Ring
If this ring has a complicated nested structure, this method guaranties that the resulting random element will reflect ring complicated structure, i.e.
randomElementTree(int, int, RandomGenerator) - Method in class cc.redberry.rings.poly.MultivariateRing
Generates random multivariate polynomial
randomElementTree(int, int, RandomGenerator) - Method in class cc.redberry.rings.poly.UnivariateRing
Gives a random univariate polynomial with the degree randomly picked from minDegree (inclusive) to maxDegree (exclusive) and coefficients generated via Ring.randomElementTree(RandomGenerator) method
randomElementTree(RandomGenerator) - Method in class cc.redberry.rings.poly.MultivariateRing
 
randomElementTree(RandomGenerator) - Method in class cc.redberry.rings.poly.QuotientRing
 
randomElementTree(RandomGenerator) - Method in class cc.redberry.rings.poly.UnivariateRing
Gives a random univariate polynomial with the degree randomly picked from UnivariateRing.MIN_DEGREE_OF_RANDOM_POLY (inclusive) to UnivariateRing.MAX_DEGREE_OF_RANDOM_POLY (exclusive)
randomElementTree(RandomGenerator) - Method in class cc.redberry.rings.Rationals
 
randomElementTree(RandomGenerator) - Method in interface cc.redberry.rings.Ring
If this ring has a complicated nested structure, this method guaranties that the resulting random element will reflect ring complicated structure, i.e.
randomInt(BigInteger, RandomGenerator) - Static method in class cc.redberry.rings.util.RandomUtil
Returns random integer in range [0, bound).
randomIntArray(int, int, int, RandomGenerator) - Static method in class cc.redberry.rings.util.RandomUtil
Creates random array of length degree + 1 with elements bounded by bound (by absolute value).
randomIrreduciblePolynomial(long, int, RandomGenerator) - Static method in class cc.redberry.rings.poly.univar.IrreduciblePolynomials
Generated random irreducible Zp polynomial of degree degree
randomIrreduciblePolynomial(Ring<E>, int, RandomGenerator) - Static method in class cc.redberry.rings.poly.univar.IrreduciblePolynomials
Generated random irreducible polynomial over specified ring of degree degree
randomIrreduciblePolynomial(Poly, int, RandomGenerator) - Static method in class cc.redberry.rings.poly.univar.IrreduciblePolynomials
Generated random irreducible polynomial of degree degree
randomIrreduciblePolynomialOverZ(int, RandomGenerator) - Static method in class cc.redberry.rings.poly.univar.IrreduciblePolynomials
Generated random irreducible polynomial over Z
randomLongArray(int, long, long, RandomGenerator) - Static method in class cc.redberry.rings.util.RandomUtil
Creates random array of length degree + 1 with elements bounded by bound (by absolute value).
randomLongArray(int, long, RandomGenerator) - Static method in class cc.redberry.rings.poly.univar.RandomUnivariatePolynomials
Creates random array of length degree + 1 with elements bounded by bound (by absolute value).
randomMonicPoly(int, long, RandomGenerator) - Static method in class cc.redberry.rings.poly.univar.RandomUnivariatePolynomials
Creates random polynomial of specified degree.
randomMonicPoly(int, BigInteger, RandomGenerator) - Static method in class cc.redberry.rings.poly.univar.RandomUnivariatePolynomials
Creates random polynomial of specified degree.
randomMonicPoly(int, Ring<E>, RandomGenerator) - Static method in class cc.redberry.rings.poly.univar.RandomUnivariatePolynomials
Creates random polynomial of specified degree.
RandomMultivariatePolynomials - Class in cc.redberry.rings.poly.multivar
Methods to generate random multivariate polynomials.
randomNonZeroElement(RandomGenerator) - Method in class cc.redberry.rings.IntegersZp64
Returns a random non zero element from this ring
randomNonZeroElement(RandomGenerator) - Method in interface cc.redberry.rings.Ring
Returns a random non zero element from this ring
randomPoly(int, long, RandomGenerator) - Static method in class cc.redberry.rings.poly.univar.RandomUnivariatePolynomials
Creates random polynomial of specified degree with elements bounded by bound (by absolute value).
randomPoly(int, BigInteger, RandomGenerator) - Static method in class cc.redberry.rings.poly.univar.RandomUnivariatePolynomials
Creates random polynomial of specified degree with elements bounded by bound (by absolute value).
randomPoly(int, Ring<E>, Function<RandomGenerator, E>, RandomGenerator) - Static method in class cc.redberry.rings.poly.univar.RandomUnivariatePolynomials
Creates random polynomial of specified degree with elements from specified ring
randomPoly(int, Ring<E>, RandomGenerator) - Static method in class cc.redberry.rings.poly.univar.RandomUnivariatePolynomials
Creates random polynomial of specified degree with elements from specified ring
randomPoly(int, RandomGenerator) - Static method in class cc.redberry.rings.poly.univar.RandomUnivariatePolynomials
Creates random polynomial of specified degree.
randomPoly(Poly, int, RandomGenerator) - Static method in class cc.redberry.rings.poly.univar.RandomUnivariatePolynomials
Creates random polynomial of specified degree.
randomPolynomial(int, int, int, int, Ring<E>, Comparator<DegreeVector>, Function<RandomGenerator, E>, RandomGenerator) - Static method in class cc.redberry.rings.poly.multivar.RandomMultivariatePolynomials
Generates random polynomial
randomPolynomial(int, int, int, BigInteger, Comparator<DegreeVector>, RandomGenerator) - Static method in class cc.redberry.rings.poly.multivar.RandomMultivariatePolynomials
Generates random Z[X] polynomial with coefficients bounded by bound
randomPolynomial(int, int, int, IntegersZp64, Comparator<DegreeVector>, RandomGenerator) - Static method in class cc.redberry.rings.poly.multivar.RandomMultivariatePolynomials
Generates random Zp[X] polynomial over machine integers
randomPolynomial(int, int, int, IntegersZp64, RandomGenerator) - Static method in class cc.redberry.rings.poly.multivar.RandomMultivariatePolynomials
Generates random Zp[X] polynomial over machine integers
randomPolynomial(int, int, int, Ring<E>, Comparator<DegreeVector>, Function<RandomGenerator, E>, RandomGenerator) - Static method in class cc.redberry.rings.poly.multivar.RandomMultivariatePolynomials
Generates random polynomial
randomPolynomial(int, int, int, Ring<E>, Comparator<DegreeVector>, RandomGenerator) - Static method in class cc.redberry.rings.poly.multivar.RandomMultivariatePolynomials
Generates random polynomial
randomPolynomial(int, int, int, RandomGenerator) - Static method in class cc.redberry.rings.poly.multivar.RandomMultivariatePolynomials
Generates random Z[X] polynomial
randomPolynomial(Poly, int, int, RandomGenerator) - Static method in class cc.redberry.rings.poly.multivar.RandomMultivariatePolynomials
Generates random multivariate polynomial
randomPrime(RandomGenerator) - Method in class cc.redberry.rings.primes.SieveOfAtkin
 
randomSharpIntArray(int, int, RandomGenerator) - Static method in class cc.redberry.rings.util.RandomUtil
Creates random array of length degree + 1 with elements bounded by bound (by absolute value).
randomSharpPolynomial(int, int, int, IntegersZp64, Comparator<DegreeVector>, RandomGenerator) - Static method in class cc.redberry.rings.poly.multivar.RandomMultivariatePolynomials
Generates random Zp[X] polynomial over machine integers
randomSharpPolynomial(int, int, int, Ring<E>, Comparator<DegreeVector>, Function<RandomGenerator, E>, RandomGenerator) - Static method in class cc.redberry.rings.poly.multivar.RandomMultivariatePolynomials
Generates random Zp[X] polynomial over machine integers
RandomUnivariatePolynomials - Class in cc.redberry.rings.poly.univar
Methods to generate random polynomials.
RandomUtil - Class in cc.redberry.rings.util
 
range(int, int) - Method in class cc.redberry.rings.poly.multivar.AMonomial
Selects range from this
Rational<E> - Class in cc.redberry.rings
 
Rational(Ring<E>, E) - Constructor for class cc.redberry.rings.Rational
 
Rational(Ring<E>, E, E) - Constructor for class cc.redberry.rings.Rational
 
RationalReconstruction - Class in cc.redberry.rings
 
Rationals<E> - Class in cc.redberry.rings
The ring of rationals (Q).
Rationals(Ring<E>) - Constructor for class cc.redberry.rings.Rationals
 
reciprocal() - Method in class cc.redberry.rings.Rational
Reciprocal of this
reciprocal(long) - Method in class cc.redberry.rings.IntegersZp64
Returns modular inverse of val
reciprocal(BigInteger) - Method in class cc.redberry.rings.Integers
 
reciprocal(BigInteger) - Method in class cc.redberry.rings.IntegersZp
 
reciprocal(Rational<E>) - Method in class cc.redberry.rings.Rationals
 
reciprocal(E) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
 
reciprocal(E) - Method in interface cc.redberry.rings.Ring
Gives the inverse element element ^ (-1)
reciprocal(I) - Method in class cc.redberry.rings.ImageRing
 
reciprocal(Poly) - Method in class cc.redberry.rings.poly.QuotientRing
 
reconstruct(long, long, long, long) - Static method in class cc.redberry.rings.RationalReconstruction
Performs a rational number reconstruction.
reconstruct(BigInteger, BigInteger, BigInteger, BigInteger) - Static method in class cc.redberry.rings.RationalReconstruction
Performs a rational number reconstruction.
reconstruct(Poly, Poly, int, int) - Static method in class cc.redberry.rings.RationalReconstruction
Performs a rational number reconstruction.
reconstructFarey(BigInteger, BigInteger) - Static method in class cc.redberry.rings.RationalReconstruction
Performs a rational number reconstruction via Farey images, that is reconstructuction with bound B = sqrt(N/2 - 1/2)
reconstructFareyErrorTolerant(BigInteger, BigInteger) - Static method in class cc.redberry.rings.RationalReconstruction
Performs a error tolerant rational number reconstruction as described in Algorithm 5 of Janko Boehm, Wolfram Decker, Claus Fieker, Gerhard Pfister, "The use of Bad Primes in Rational Reconstruction", https://arxiv.org/abs/1207.1651v2
ReducedPRS(UnivariatePolynomial<E>, UnivariatePolynomial<E>) - Static method in class cc.redberry.rings.poly.univar.UnivariateResultants
Computes polynomial remainder sequence using reduced division algorithm
reducedRowEchelonForm(IntegersZp64, long[][], long[]) - Static method in class cc.redberry.rings.linear.LinearSolver
Gives the reduced row echelon form of the linear system lhs.x = rhs from a given row echelon form.
reducedRowEchelonForm(Ring<E>, E[][], E[]) - Static method in class cc.redberry.rings.linear.LinearSolver
Gives the reduced row echelon form of the linear system lhs.x = rhs from a given row echelon form.
reduceUnitContent() - Method in class cc.redberry.rings.poly.PolynomialFactorDecomposition
Calls PolynomialFactorDecomposition.monic() if the coefficient ring is field and PolynomialFactorDecomposition.primitive() otherwise
release() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
release caches
release() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
release caches
release() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
release caches
remainder(BigDecimal) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is (this % divisor).
remainder(BigDecimal, MathContext) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose value is (this % divisor), with rounding according to the context settings.
remainder(BigInteger) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is (this % val).
remainder(BigInteger, int) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is (this % val) using a specified number of threads if the inputs are sufficiently large.
remainder(BigInteger, BigInteger) - Method in class cc.redberry.rings.Integers
 
remainder(BigInteger, BigInteger) - Method in class cc.redberry.rings.IntegersZp
 
remainder(UnivariatePolynomial<E>, UnivariatePolynomial<E>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Returns remainder of dividend and divider.
remainder(UnivariatePolynomialZ64, UnivariatePolynomialZ64, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Returns remainder of dividend and divider or null if division is not possible.
remainder(UnivariatePolynomialZp64, UnivariatePolynomialZp64, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Returns remainder of dividing dividend by divider.
remainder(E, E) - Method in class cc.redberry.rings.poly.AlgebraicNumberField
 
remainder(E, E) - Method in class cc.redberry.rings.poly.FiniteField
 
remainder(E, E) - Method in interface cc.redberry.rings.Ring
Returns the remainder of dividend / divider
remainder(I, I) - Method in class cc.redberry.rings.ImageRing
 
remainder(Poly, Collection<Poly>) - Static method in class cc.redberry.rings.poly.multivar.MultivariateDivision
Performs multivariate division with remainder and rerurns the remainder.
remainder(Poly, Poly) - Static method in class cc.redberry.rings.poly.multivar.MultivariateDivision
Performs multivariate division with remainder and rerurns the remainder.
remainder(Poly, Poly) - Static method in class cc.redberry.rings.poly.PolynomialMethods
Returns quotient and remainder of a and b.
remainder(Poly, Poly) - Method in class cc.redberry.rings.poly.UnivariateRing
 
remainder(Poly, Poly...) - Static method in class cc.redberry.rings.poly.multivar.MultivariateDivision
Performs multivariate division with remainder and returns the remainder.
remainder(Poly, Poly, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Returns remainder of dividend and divider.
remainderCoefficientBound(UnivariatePolynomial<E>, UnivariatePolynomial<E>) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Gives an upper bound on the coefficients of remainder of division of dividend by divider
remainderFast(UnivariatePolynomial<E>, UnivariatePolynomial<E>, UnivariateDivision.InverseModMonomial<UnivariatePolynomial<E>>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Fast remainder using Newton's iteration with switch to classical remainder for small polynomials.
remainderFast(UnivariatePolynomialZp64, UnivariatePolynomialZp64, UnivariateDivision.InverseModMonomial<UnivariatePolynomialZp64>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Fast remainder using Newton's iteration with switch to classical remainder for small polynomials.
remainderFast(Poly, Poly, UnivariateDivision.InverseModMonomial<Poly>, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Fast remainder using Newton's iteration with switch to classical remainder for small polynomials.
remainderMonomial(T, int, boolean) - Static method in class cc.redberry.rings.poly.univar.UnivariateDivision
Returns the remainder of dividend and monomial x^xDegree
remainderNumerator() - Method in class cc.redberry.rings.poly.multivar.GroebnerBases.HilbertSeries
Remainder part R(t) of HPS(t): HPS(t) = I(t) + R(t)/(1-t)^m
remainderParallel(BigInteger) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is (this % val), using multiple threads if the inputs are sufficiently large.
remainders - Variable in class cc.redberry.rings.poly.univar.UnivariateResultants.APolynomialRemainderSequence
Polynomial remainder sequence
remove(int) - Method in class cc.redberry.rings.util.ListWrapper
 
remove(int[], int) - Static method in class cc.redberry.rings.util.ArraysUtil
 
remove(int[], int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Removes elements at specified positions in specified array.
remove(long[], int) - Static method in class cc.redberry.rings.util.ArraysUtil
 
remove(long[], int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Removes elements at specified positions in specified array.
remove(Object) - Method in class cc.redberry.rings.util.ListWrapper
 
remove(T[], int) - Static method in class cc.redberry.rings.util.ArraysUtil
 
remove(T[], int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Removes elements at specified positions in specified array.
removeAll(Collection<?>) - Method in class cc.redberry.rings.util.ListWrapper
 
removeIf(Predicate<? super Poly>) - Method in class cc.redberry.rings.util.ListWrapper
 
removeRange(int, int) - Method in class cc.redberry.rings.util.ListWrapper
 
removeRedundant(List<Poly>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Computes reduced Groebner basis
renameVariables(P, int[]) - Static method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Rename variables from [0,1,...N] to [newVariables[0], newVariables[1], ..., newVariables[N]] (new instance created)
renameVariables(P, int[], Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Rename variables from [0,1,...N] to [newVariables[0], newVariables[1], ..., newVariables[N]] (new instance created)
renameVariables(T, int[]) - Static method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Rename variables from [0,1,...N] to [newVariables[0], newVariables[1], ..., newVariables[N]] (new instance created)
replaceAll(UnaryOperator<Poly>) - Method in class cc.redberry.rings.util.ListWrapper
 
resultant() - Method in class cc.redberry.rings.poly.univar.UnivariateResultants.PolynomialRemainderSequence
Resultant of initial polynomials
resultant() - Method in class cc.redberry.rings.poly.univar.UnivariateResultants.PolynomialRemainderSequenceZp64
Resultant of initial polynomials
Resultant(UnivariatePolynomial<E>, UnivariatePolynomial<E>) - Static method in class cc.redberry.rings.poly.univar.UnivariateResultants
Computes resultant of two polynomials
Resultant(UnivariatePolynomialZp64, UnivariatePolynomialZp64) - Static method in class cc.redberry.rings.poly.univar.UnivariateResultants
Computes resultant of two polynomials
Resultant(Poly, Poly, int) - Static method in class cc.redberry.rings.poly.multivar.MultivariateResultants
Calculates polynomial resultant of two given polynomials with respect to specified variable
ResultantAsPoly(Poly, Poly) - Static method in class cc.redberry.rings.poly.univar.UnivariateResultants
Computes resultant of two polynomials and returns the result as a constant poly
ResultantInGF(Poly, Poly, int) - Static method in class cc.redberry.rings.poly.multivar.MultivariateResultants
Computes polynomial resultant of two polynomials over finite field
ResultantInSmallCharacteristic(Poly, Poly, int) - Static method in class cc.redberry.rings.poly.multivar.MultivariateResultants
Resultant in small characteristic
ResultantInZ(MultivariatePolynomial<BigInteger>, MultivariatePolynomial<BigInteger>, int) - Static method in class cc.redberry.rings.poly.multivar.MultivariateResultants
Computes polynomial resultant of two polynomials over Z
retainAll(Collection<?>) - Method in class cc.redberry.rings.util.ListWrapper
 
reverse() - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
Reverses the coefficients of this
reverse() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
reverse(int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
reverse(int[], int, int) - Static method in class cc.redberry.rings.util.ArraysUtil
 
reverse(long[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
reverse(long[], int, int) - Static method in class cc.redberry.rings.util.ArraysUtil
 
reverse(T[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
reverse(T[], int, int) - Static method in class cc.redberry.rings.util.ArraysUtil
 
ring - Variable in class cc.redberry.rings.FactorDecomposition
The ring
ring - Variable in class cc.redberry.rings.ImageRing
the ring
ring - Variable in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebra
 
ring - Variable in class cc.redberry.rings.poly.multivar.IMonomialAlgebra.MonomialAlgebraZp64
 
ring - Variable in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
The coefficient ring
ring - Variable in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64.lPrecomputedPowers
 
ring - Variable in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
The ring.
ring - Variable in class cc.redberry.rings.poly.univar.HenselLifting.bLinearLift
The modulus
ring - Variable in class cc.redberry.rings.poly.univar.HenselLifting.bQuadraticLift
The modulus
ring - Variable in class cc.redberry.rings.poly.univar.UnivariatePolynomial
The coefficient ring
ring - Variable in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
The coefficient ring
ring - Variable in class cc.redberry.rings.Rational
The ring.
ring - Variable in class cc.redberry.rings.Rationals
Ring that numerator and denominator belongs to
Ring<E> - Interface in cc.redberry.rings
Ring of elements.
Rings - Class in cc.redberry.rings
Common rings.
round(MathContext) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal rounded according to the MathContext settings.
ROUND_CEILING - Static variable in class cc.redberry.rings.bigint.BigDecimal
Rounding mode to round towards positive infinity.
ROUND_DOWN - Static variable in class cc.redberry.rings.bigint.BigDecimal
Rounding mode to round towards zero.
ROUND_FLOOR - Static variable in class cc.redberry.rings.bigint.BigDecimal
Rounding mode to round towards negative infinity.
ROUND_HALF_DOWN - Static variable in class cc.redberry.rings.bigint.BigDecimal
Rounding mode to round towards "nearest neighbor" unless both neighbors are equidistant, in which case round down.
ROUND_HALF_EVEN - Static variable in class cc.redberry.rings.bigint.BigDecimal
Rounding mode to round towards the "nearest neighbor" unless both neighbors are equidistant, in which case, round towards the even neighbor.
ROUND_HALF_UP - Static variable in class cc.redberry.rings.bigint.BigDecimal
Rounding mode to round towards "nearest neighbor" unless both neighbors are equidistant, in which case round up.
ROUND_UNNECESSARY - Static variable in class cc.redberry.rings.bigint.BigDecimal
Rounding mode to assert that the requested operation has an exact result, hence no rounding is necessary.
ROUND_UP - Static variable in class cc.redberry.rings.bigint.BigDecimal
Rounding mode to round away from zero.
RoundingMode - Enum in cc.redberry.rings.bigint
Specifies a rounding behavior for numerical operations capable of discarding precision.
rowEchelonForm(IntegersZp64, long[][]) - Static method in class cc.redberry.rings.linear.LinearSolver
Gives the row echelon form of the matrix
rowEchelonForm(IntegersZp64, long[][], boolean) - Static method in class cc.redberry.rings.linear.LinearSolver
Gives the row echelon form of the matrix
rowEchelonForm(IntegersZp64, long[][], long[]) - Static method in class cc.redberry.rings.linear.LinearSolver
Gives the row echelon form of the linear system lhs.x = rhs (rhs may be null).
rowEchelonForm(IntegersZp64, long[][], long[], boolean, boolean) - Static method in class cc.redberry.rings.linear.LinearSolver
Gives the row echelon form of the linear system lhs.x = rhs (rhs may be null).
rowEchelonForm(Ring<E>, E[][]) - Static method in class cc.redberry.rings.linear.LinearSolver
Gives the row echelon form of the matrix
rowEchelonForm(Ring<E>, E[][], boolean) - Static method in class cc.redberry.rings.linear.LinearSolver
Gives the row echelon form of the matrix
rowEchelonForm(Ring<E>, E[][], E[]) - Static method in class cc.redberry.rings.linear.LinearSolver
Gives the row echelon form of the linear system lhs.x = rhs.
rowEchelonForm(Ring<E>, E[][], E[], boolean, boolean) - Static method in class cc.redberry.rings.linear.LinearSolver
Gives the row echelon form of the linear system lhs.x = rhs.

S

safeAdd(long, long) - Static method in class cc.redberry.rings.poly.MachineArithmetic
safeMultiply(long, long) - Static method in class cc.redberry.rings.poly.MachineArithmetic
safeMultiply(long, long, long) - Static method in class cc.redberry.rings.poly.MachineArithmetic
safeNegate(long) - Static method in class cc.redberry.rings.poly.MachineArithmetic
safePow(long, long) - Static method in class cc.redberry.rings.poly.MachineArithmetic
Returns base in a power of e (non negative)
safeSubtract(long, long) - Static method in class cc.redberry.rings.poly.MachineArithmetic
safeToInt(long) - Static method in class cc.redberry.rings.poly.MachineArithmetic
Casts long to signed int throwing exception in case of overflow.
sameCoefficientRingWith(MultivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
sameCoefficientRingWith(MultivariatePolynomialZp64) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
sameCoefficientRingWith(UnivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
sameCoefficientRingWith(UnivariatePolynomialZ64) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
sameCoefficientRingWith(UnivariatePolynomialZp64) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
sameCoefficientRingWith(Poly) - Method in interface cc.redberry.rings.poly.IPolynomial
Returns whether oth and this have the same coefficient ring
sameSkeletonExceptQ(AMultivariatePolynomial, int...) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Tests whether this and oth have the same skeleton with respect all except specified variables
sameSkeletonQ(AMultivariatePolynomial) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Tests whether this and oth have the same skeleton
sameSkeletonQ(AMultivariatePolynomial, int...) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Tests whether this and oth have the same skeleton with respect to specified variables
scale() - Method in class cc.redberry.rings.bigint.BigDecimal
Returns the scale of this BigDecimal.
scale(E) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Replaces x -> scale * x and returns a copy
scaleByPowerOfTen(int) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose numerical value is equal to (this * 10n).
seek(char) - Method in interface cc.redberry.rings.io.Tokenizer.CharacterStream
skip all chars preceding the specified char and place caret to the first char after the specified one
select(int) - Method in class cc.redberry.rings.poly.multivar.AMonomial
Sets exponents of all variables except the specified variable to zero
select(int[]) - Method in class cc.redberry.rings.poly.multivar.AMonomial
Set's exponents of all variables except specified variables to zero
select(int[], int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Selects elements from specified array at specified positions.
select(T[], int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Selects elements from specified array at specified positions.
sequence(int) - Static method in class cc.redberry.rings.util.ArraysUtil
 
sequence(int, int) - Static method in class cc.redberry.rings.util.ArraysUtil
 
SerializableFunction<T,​R> - Interface in cc.redberry.rings.util
 
seriesCoefficient(int, int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Gives (unevaluated) coefficient of Taylor series expansion for specified variable that is derivative(poly, variable, order) / order! , where the derivative is formal derivative and calculated with arithmetic performed in Z ring (to overcome possible zeros in Zp).
seriesCoefficient(int, int) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
seriesCoefficient(int, int) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
seriesExpansionDense(Ring<uPoly>, Poly, int, HenselLifting.IEvaluation<Term, Poly>) - Static method in class cc.redberry.rings.poly.multivar.HenselLifting
Generates a power series expansion for poly about the point specified by variable and evaluation
set(int, int) - Method in class cc.redberry.rings.poly.multivar.AMonomial
Set's exponent of specified variable to specified value
set(int, long) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64.lPrecomputedPowersHolder
 
set(int, E) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Sets i-th coefficient of this poly with specified value
set(int, Poly) - Method in class cc.redberry.rings.util.ListWrapper
 
set(UnivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
set(Poly) - Method in interface cc.redberry.rings.poly.IPolynomial
Sets the content of this to oth
set(Poly) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
 
setAllCoefficientsToUnit() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Set all coefficients to units
setAndDestroy(UnivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
setAndDestroy(Poly) - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
Sets the content of this with oth and destroys oth
setBit(int) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is equivalent to this BigInteger with the designated bit set.
setCoefficient(long) - Method in class cc.redberry.rings.poly.multivar.MonomialZp64
 
setCoefficient(E) - Method in class cc.redberry.rings.poly.multivar.Monomial
 
setCoefficientFrom(Monomial<E>) - Method in class cc.redberry.rings.poly.multivar.Monomial
 
setCoefficientFrom(MonomialZp64) - Method in class cc.redberry.rings.poly.multivar.MonomialZp64
 
setCoefficientFrom(Term) - Method in class cc.redberry.rings.poly.multivar.AMonomial
Sets coefficient of this with coefficient of oth
setCoefficientRingFrom(MultivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
setCoefficientRingFrom(MultivariatePolynomialZp64) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
setCoefficientRingFrom(UnivariatePolynomial<E>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
setCoefficientRingFrom(UnivariatePolynomialZ64) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
setCoefficientRingFrom(UnivariatePolynomialZp64) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
setCoefficientRingFrom(Poly) - Method in interface cc.redberry.rings.poly.IPolynomial
Set the coefficient ring from specified poly
setCoefficientRingFromOptional(Poly) - Method in interface cc.redberry.rings.poly.IPolynomial
 
setDegreeVector(int[]) - Method in class cc.redberry.rings.poly.multivar.AMonomial
Sets the degree vector
setDegreeVector(int[], int) - Method in class cc.redberry.rings.poly.multivar.AMonomial
Sets the degree vector
setDegreeVector(int[], int) - Method in class cc.redberry.rings.poly.multivar.Monomial
 
setDegreeVector(int[], int) - Method in class cc.redberry.rings.poly.multivar.MonomialZp64
 
setDegreeVector(DegreeVector) - Method in class cc.redberry.rings.poly.multivar.AMonomial
Sets the degree vector
setDegreeVector(DegreeVector) - Method in class cc.redberry.rings.poly.multivar.Monomial
 
setDegreeVector(DegreeVector) - Method in class cc.redberry.rings.poly.multivar.MonomialZp64
 
setFrom(int, UnivariatePolynomial<E>, int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
setFrom(int, Poly, int) - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
Sets i-th element of this by j-th element of other poly
setLC(int, Poly) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Set the leading coefficient of specified variable to a specified value (this is considered as R[other_variables][variable])
setLC(long) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Sets the leading coefficient to the specified value
setLC(E) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Sets the leading coefficient to the specified value
setLC(E) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Sets the leading coefficient of this poly
setLcFrom(Poly) - Method in class cc.redberry.rings.poly.PolynomialFactorDecomposition
Makes the lead coefficient of this factorization equal to the l.c.
setModulus(long) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
Creates new Zp[x] polynomial by coping the coefficients of this and reducing them modulo new modulus.
setModulus(IntegersZp64) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
Creates new Zp[x] polynomial by coping the coefficients of this and reducing them modulo new modulus.
setModulusUnsafe(long) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
does not copy the data and does not reduce the data with new modulus
setModulusUnsafe(IntegersZp64) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
does not copy the data and does not reduce the data with new modulus
setNVariables(int) - Method in class cc.redberry.rings.poly.multivar.AMonomial
Sets the number of variables
setNVariables(int) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
auxiliary method
setOrdering(Comparator<DegreeVector>) - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Makes a copy of this with the new ordering newOrdering
setRing(long) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Switches to another ring specified by newModulus
setRing(IntegersZp64) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Switches to another ring specified by newDomain
setRing(Ring<E>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Returns a copy of this with coefficient reduced to a newRing
setRing(Ring<E>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Switches to another ring specified by newRing
setRing(Ring<E>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Returns a copy of this with elements reduced to a new coefficient ring
setRingUnsafe(IntegersZp64) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
internal API
setRingUnsafe(Ring<E>) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
internal API
setRingUnsafe(Ring<E>) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
internal API
setScale(int) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose scale is the specified value, and whose value is numerically equal to this BigDecimal's.
setScale(int, int) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose scale is the specified value, and whose unscaled value is determined by multiplying or dividing this BigDecimal's unscaled value by the appropriate power of ten to maintain its overall value.
setScale(int, RoundingMode) - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal whose scale is the specified value, and whose unscaled value is determined by multiplying or dividing this BigDecimal's unscaled value by the appropriate power of ten to maintain its overall value.
setToValueOf(E[]) - Method in interface cc.redberry.rings.Ring
Applies Ring.valueOf(Object) inplace to the specified array
setUnit(E) - Method in class cc.redberry.rings.FactorDecomposition
Sets the unit factor
setUnit(Poly) - Method in class cc.redberry.rings.poly.PolynomialFactorDecomposition
 
setZero(int) - Method in class cc.redberry.rings.poly.multivar.AMonomial
Set exponent of specified var to zero
setZero(int) - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
Fills i-th element with zero
setZero(int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
setZero(int[]) - Method in class cc.redberry.rings.poly.multivar.AMonomial
Set exponents of specified variables to zero
SEVEN - Static variable in class cc.redberry.rings.bigint.BigInteger
The BigInteger constant seven.
shift(int[], long[]) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Substitutes variable -> variable + shift for each variable from variables array
shift(int[], E[]) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Returns a copy of this with variables -> variables + shifts
shift(int, long) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Returns a copy of this with variable -> variable + shift
shift(int, long) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
Returns a copy of this with variable -> variable + shift
shift(int, E) - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Returns a copy of this with variable -> variable + shift
shift(E) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Shifts variable x -> x + value and returns the result (new instance)
shiftLeft(int) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is (this << n).
shiftLeft(int) - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
Returns the quotient this / x^offset, it is polynomial with coefficient list formed by shifting coefficients of this to the left by offset.
shiftLeft(int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
shiftRight(int) - Method in class cc.redberry.rings.bigint.BigInteger
Returns a BigInteger whose value is (this >> n).
shiftRight(int) - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
Multiplies this by the x^offset.
shiftRight(int) - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
SHORT_MAX_VALUE - Static variable in class cc.redberry.rings.bigint.BigInteger
The BigInteger constant Int.MAX_VALUE.
short2int(short[]) - Static method in class cc.redberry.rings.util.ArraysUtil
 
shortValueExact() - Method in class cc.redberry.rings.bigint.BigDecimal
Converts this BigDecimal to a short, checking for lost information.
shortValueExact() - Method in class cc.redberry.rings.bigint.BigInteger
Converts this BigInteger to a short, checking for lost information.
shouldReduceFast(int) - Method in class cc.redberry.rings.poly.SimpleFieldExtension
empiric to switch between fast and plain division
shuffle(int[], RandomGenerator) - Static method in class cc.redberry.rings.util.ArraysUtil
 
SieveOfAtkin - Class in cc.redberry.rings.primes
Plain sieve of Atkin implementation based on this stackoverflow answer
signum() - Method in class cc.redberry.rings.bigint.BigDecimal
Returns the signum function of this BigDecimal.
signum() - Method in class cc.redberry.rings.bigint.BigInteger
Returns the signum function of this BigInteger.
signum() - Method in class cc.redberry.rings.poly.PolynomialFactorDecomposition
Calculates the signum of the polynomial constituted by this decomposition
signum() - Method in class cc.redberry.rings.Rational
Signum of this rational
signum(BigInteger) - Method in class cc.redberry.rings.Integers
 
signum(Rational<E>) - Method in class cc.redberry.rings.Rationals
 
signum(E) - Method in interface cc.redberry.rings.Ring
Returns -1 if element < 0, 0 if element == 0 and 1 if element > 0, where comparison is specified by Comparator.compare(Object, Object)
signum(I) - Method in class cc.redberry.rings.ImageRing
 
signum(mPoly) - Method in class cc.redberry.rings.poly.MultipleFieldExtension
 
signum(Poly) - Method in interface cc.redberry.rings.poly.IPolynomialRing
 
signumOfLC() - Method in interface cc.redberry.rings.poly.IPolynomial
Gives signum of the leading coefficient
signumOfLC() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
signumOfLC() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
signumOfLC() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
SimpleFieldExtension<E extends IUnivariatePolynomial<E>> - Class in cc.redberry.rings.poly
A simple field extension F(α) represented as a univariate quotient ring F[x]/<m(x)> where m(x) is the minimal polynomial of α.
SimpleFieldExtension(E) - Constructor for class cc.redberry.rings.poly.SimpleFieldExtension
Constructs a simple field extension F(α) generated by the algebraic number α with the specified minimal polynomial.
SimpleFieldExtension(uPoly) - Static method in class cc.redberry.rings.Rings
Returns a simple field extension generated by given minimal polynomial
SimpleStringifier() - Constructor for class cc.redberry.rings.io.IStringifier.SimpleStringifier
 
SIX - Static variable in class cc.redberry.rings.bigint.BigInteger
The BigInteger constant six.
size() - Method in class cc.redberry.rings.FactorDecomposition
Number of non-constant factors
size() - Method in interface cc.redberry.rings.poly.IPolynomial
Returns the size of this polynomial
size() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Returns the number of terms in this polynomial
size() - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
Returns the degree of this polynomial
size() - Method in class cc.redberry.rings.poly.univar.UnivariateResultants.APolynomialRemainderSequence
 
size() - Method in class cc.redberry.rings.util.ListWrapper
 
SIZE_OF_RANDOM_POLY - Static variable in class cc.redberry.rings.poly.MultivariateRing
Default size of polynomial generated with MultivariateRing.randomElementTree(RandomGenerator)
skeletonHashCode() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
 
skeletonHashCode() - Method in class cc.redberry.rings.poly.multivar.MonomialSet
 
SmallPrimes - Class in cc.redberry.rings.primes
Prime factorization of 32-bit integers.
smallTrialDivision(int, TIntArrayList) - Static method in class cc.redberry.rings.primes.SmallPrimes
Extract small factors.
solve(IntegersZp64, long[][], long[]) - Static method in class cc.redberry.rings.linear.LinearSolver
Solves linear system lhs.x = rhs and reduces the lhs to row echelon form.
solve(IntegersZp64, long[][], long[], long[]) - Static method in class cc.redberry.rings.linear.LinearSolver
Solves linear system lhs.x = rhs and reduces the lhs to row echelon form.
solve(IntegersZp64, long[][], long[], long[], boolean) - Static method in class cc.redberry.rings.linear.LinearSolver
Solves linear system lhs.x = rhs and reduces the lhs to row echelon form.
solve(IntegersZp64, ArrayList<long[]>, TLongArrayList, long[]) - Static method in class cc.redberry.rings.linear.LinearSolver
Solves linear system lhs.x = rhs and stores the result in result (which should be of the enough length).
solve(Ring<E>, E[][], E[]) - Static method in class cc.redberry.rings.linear.LinearSolver
Solves linear system lhs.x = rhs and reduces lhs to row echelon form.
solve(Ring<E>, E[][], E[], E[]) - Static method in class cc.redberry.rings.linear.LinearSolver
Solves linear system lhs.x = rhs and reduces the lhs to row echelon form.
solve(Ring<E>, E[][], E[], E[], boolean) - Static method in class cc.redberry.rings.linear.LinearSolver
Solves linear system lhs.x = rhs and reduces the lhs to row echelon form.
solve(Ring<E>, ArrayList<E[]>, ArrayList<E>, E[]) - Static method in class cc.redberry.rings.linear.LinearSolver
Solves linear system lhs.x = rhs and stores the result in result (which should be of the enough length).
solve(Poly) - Method in class cc.redberry.rings.poly.univar.DiophantineEquations.DiophantineSolver
 
solveGB(List<Poly>, List<Collection<DegreeVector>>, Comparator<DegreeVector>) - Static method in class cc.redberry.rings.poly.multivar.GroebnerBases
Sparse Groebner basis via "linear lifting".
solveVandermonde(IntegersZp64, long[], long[]) - Static method in class cc.redberry.rings.linear.LinearSolver
Solves Vandermonde linear system (that is with i-th equation of the form row[i]^0 * x0 + row[i]^1 * x1 + ... row[i]^N * xN = rhs[i] ).
solveVandermonde(IntegersZp64, long[], long[], long[]) - Static method in class cc.redberry.rings.linear.LinearSolver
Solves Vandermonde linear system (that is with i-th equation of the form row[i]^0 * x0 + row[i]^1 * x1 + ... row[i]^N * xN = rhs[i] ) and stores the result in result (which should be of the enough length).
solveVandermonde(Ring<E>, E[], E[]) - Static method in class cc.redberry.rings.linear.LinearSolver
Solves Vandermonde linear system (that is with i-th equation of the form row[i]^0 * x0 + row[i]^1 * x1 + ... row[i]^N * xN = rhs[i] ).
solveVandermonde(Ring<E>, E[], E[], E[]) - Static method in class cc.redberry.rings.linear.LinearSolver
Solves Vandermonde linear system (that is with i-th equation of the form row[i]^0 * x0 + row[i]^1 * x1 + ... row[i]^N * xN = rhs[i] ) and stores the result in result (which should be of the enough length).
solveVandermondeT(IntegersZp64, long[], long[]) - Static method in class cc.redberry.rings.linear.LinearSolver
Solves transposed Vandermonde linear system (that is with i-th equation of the form row[0]^i * x0 + row[1]^i * x1 + ... row[N]^i * xN = rhs[i] ).
solveVandermondeT(IntegersZp64, long[], long[], long[]) - Static method in class cc.redberry.rings.linear.LinearSolver
Solves transposed Vandermonde linear system (that is with i-th equation of the form row[0]^i * x0 + row[1]^i * x1 + ... row[N]^i * xN = rhs[i] ) and stores the result in result (which should be of the enough length).
solveVandermondeT(Ring<E>, E[], E[]) - Static method in class cc.redberry.rings.linear.LinearSolver
Solves transposed Vandermonde linear system (that is with i-th equation of the form row[0]^i * x0 + row[1]^i * x1 + ... row[N]^i * xN = rhs[i] ).
solveVandermondeT(Ring<E>, E[], E[], E[]) - Static method in class cc.redberry.rings.linear.LinearSolver
Solves transposed Vandermonde linear system (that is with i-th equation of the form row[0]^i * x0 + row[1]^i * x1 + ... row[N]^i * xN = rhs[i] ) and stores the result in result (which should be of the enough length).
sort(Comparator<? super Poly>) - Method in class cc.redberry.rings.util.ListWrapper
 
SPACE - Static variable in class cc.redberry.rings.io.Tokenizer
 
sparsity() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Sparsity level: size / (product of degrees)
sparsity2() - Method in class cc.redberry.rings.poly.multivar.AMultivariatePolynomial
Sparsity level: size / nDenseTerms where nDenseTerms is a total number of possible distinct terms with total degree not larger than distinct total degrees presented in this.
split(IPolynomialRing<Poly>, int...) - Static method in class cc.redberry.rings.poly.multivar.MultivariateConversions
Given poly in R[x1,x2,...,xN] converts to poly in R[variables][other_variables]
split(Poly, int...) - Static method in class cc.redberry.rings.poly.multivar.MultivariateConversions
Given poly in R[x1,x2,...,xN] converts to poly in R[variables][other_variables]
spliterator() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
spliterator() - Method in class cc.redberry.rings.util.ListWrapper
 
SplittingField(sPoly) - Static method in class cc.redberry.rings.Rings
Splitting field of a given polynomial.
sqrtCeil(BigInteger) - Static method in class cc.redberry.rings.bigint.BigIntegerUtil
Returns ceil square root of val
sqrtFloor(BigInteger) - Static method in class cc.redberry.rings.bigint.BigIntegerUtil
Returns floor square root of val
square() - Method in interface cc.redberry.rings.poly.IPolynomial
Squares this
square() - Method in class cc.redberry.rings.poly.multivar.Ideal
Returns squared ideal
square() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
 
square() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomialZp64
 
square() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
square() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZ64
 
square() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomialZp64
 
SquareFreeFactorization(Poly) - Static method in class cc.redberry.rings.poly.multivar.MultivariateSquareFreeFactorization
Performs square-free factorization of a {@code poly.
SquareFreeFactorization(T) - Static method in class cc.redberry.rings.poly.univar.UnivariateSquareFreeFactorization
Performs square-free factorization of a poly.
SquareFreeFactorizationMusser(Poly) - Static method in class cc.redberry.rings.poly.multivar.MultivariateSquareFreeFactorization
Performs square-free factorization of a poly which coefficient ring has any characteristic using Musser's algorithm.
SquareFreeFactorizationMusser(Poly) - Static method in class cc.redberry.rings.poly.univar.UnivariateSquareFreeFactorization
Performs square-free factorization of a poly using Musser's algorithm (both zero and non-zero characteristic of coefficient ring allowed).
SquareFreeFactorizationMusserZeroCharacteristics(Poly) - Static method in class cc.redberry.rings.poly.multivar.MultivariateSquareFreeFactorization
Performs square-free factorization of a poly which coefficient ring has zero characteristic using Musser's algorithm.
SquareFreeFactorizationMusserZeroCharacteristics(Poly) - Static method in class cc.redberry.rings.poly.univar.UnivariateSquareFreeFactorization
Performs square-free factorization of a poly which coefficient ring has zero characteristic using Musser's algorithm.
SquareFreeFactorizationYunZeroCharacteristics(Poly) - Static method in class cc.redberry.rings.poly.multivar.MultivariateSquareFreeFactorization
Performs square-free factorization of a poly which coefficient ring has zero characteristic using Yun's algorithm.
SquareFreeFactorizationYunZeroCharacteristics(Poly) - Static method in class cc.redberry.rings.poly.univar.UnivariateSquareFreeFactorization
Performs square-free factorization of a poly which coefficient ring has zero characteristic using Yun's algorithm.
squareFreePart() - Method in class cc.redberry.rings.FactorDecomposition
Square-free part
SquareFreePart(Poly) - Static method in class cc.redberry.rings.poly.multivar.MultivariateSquareFreeFactorization
Returns square-free part of the poly
SquareFreePart(T) - Static method in class cc.redberry.rings.poly.univar.UnivariateSquareFreeFactorization
Returns square-free part of the poly
stableSort(int[], int[]) - Static method in class cc.redberry.rings.util.ArraysUtil
Sorts the specified array of ints into ascending order using stable sort algorithm and simultaneously permutes the coSort ints array in the same way as the target array.
statisticsNanotime(DescriptiveStatistics) - Static method in class cc.redberry.rings.util.TimeUnits
 
statisticsNanotime(DescriptiveStatistics, boolean) - Static method in class cc.redberry.rings.util.TimeUnits
 
statisticsNanotimeFull(DescriptiveStatistics) - Static method in class cc.redberry.rings.util.TimeUnits
 
stream() - Method in class cc.redberry.rings.FactorDecomposition
Stream of all factors
stream() - Method in class cc.redberry.rings.poly.multivar.MultivariatePolynomial
Returns a stream of coefficients of this
stream() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
Returns a sequential Stream with coefficients of this as its source.
stream() - Method in class cc.redberry.rings.Rational
Stream of numerator and denominator
stream() - Method in class cc.redberry.rings.util.ListWrapper
 
streamAsPolys() - Method in interface cc.redberry.rings.poly.univar.IUnivariatePolynomial
Stream polynomial coefficients as constant polynomials
streamAsPolys() - Method in class cc.redberry.rings.poly.univar.UnivariatePolynomial
 
streamWithoutUnit() - Method in class cc.redberry.rings.FactorDecomposition
Stream of all factors except FactorDecomposition.unit
StringBindings<E> - Class in cc.redberry.rings.io
 
StringBindings() - Constructor for class cc.redberry.rings.io.StringBindings
 
Stringifiable<E> - Interface in cc.redberry.rings.io
Elements that could be stringified with the help of IStringifier
stringify(Element) - Method in interface cc.redberry.rings.io.IStringifier
Stringify stringifiable object
stringify(Collection<Element>) - Method in interface cc.redberry.rings.io.IStringifier
Stringify stringifiable object
stripTrailingZeros() - Method in class cc.redberry.rings.bigint.BigDecimal
Returns a BigDecimal which is numerically equal to this one but with any trailing zeros removed from the representation.
subcoders - Variable in class cc.redberry.rings.io.Coder
inner coders
subList(int, int) - Method in class cc.redberry.rings.util.ListWrapper
 
SubresultantPRS(UnivariatePolynomial<E>, UnivariatePolynomial<E>) - Static method in class cc.redberry.rings.poly.univar.UnivariateResultants
Computes subresultant polynomial remainder sequence