t

scalaz

# Decidable 

### Companion object Decidable

#### trait Decidable[F[_]] extends Divisible[F] with InvariantAlt[F]

Coproduct analogue of Divide

Self Type
Decidable[F]
Source
Decidable.scala
Known Subclasses
Ordering
1. Alphabetic
2. By Inheritance
Inherited
1. Decidable
2. InvariantAlt
3. Divisible
4. InvariantApplicative
5. Divide
6. Contravariant
7. InvariantFunctor
8. AnyRef
9. Any
1. Hide All
2. Show All
Visibility
1. Public
2. All

### Type Members

1. trait
Definition Classes
Contravariant
2. trait DecidableLaw extends DivisibleLaw
3. trait DivideLaw extends ContravariantLaw
Definition Classes
Divide
4. trait DivisibleLaw extends DivideLaw
Definition Classes
Divisible
5. trait InvariantFunctorLaw extends AnyRef
Definition Classes
InvariantFunctor

### Abstract Value Members

1. abstract def choose2[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (Z) ⇒ \/[A1, A2]): F[Z]
2. abstract def conquer[A]: F[A]

Universally quantified instance of F[_]

Universally quantified instance of F[_]

Definition Classes
Divisible
3. abstract def divide2[A1, A2, Z](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (Z) ⇒ (A1, A2)): F[Z]
Definition Classes
Divide

### Concrete Value Members

1. final def !=(arg0: Any)
Definition Classes
AnyRef → Any
2. final def ##(): Int
Definition Classes
AnyRef → Any
3. final def ==(arg0: Any)
Definition Classes
AnyRef → Any
4. final def asInstanceOf[T0]: T0
Definition Classes
Any
5. final def choose[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (Z) ⇒ \/[A1, A2]): F[Z]
6. def choose1[Z, A1](a1: ⇒ F[A1])(f: (Z) ⇒ A1): F[Z]
7. def choose3[Z, A1, A2, A3](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (Z) ⇒ \/[A1, \/[A2, A3]]): F[Z]
8. def choose4[Z, A1, A2, A3, A4](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (Z) ⇒ \/[A1, \/[A2, \/[A3, A4]]]): F[Z]
9. final def choosing2[Z, A1, A2](f: (Z) ⇒ \/[A1, A2])(implicit fa1: F[A1], fa2: F[A2]): F[Z]
10. final def choosing3[Z, A1, A2, A3](f: (Z) ⇒ \/[A1, \/[A2, A3]])(implicit fa1: F[A1], fa2: F[A2], fa3: F[A3]): F[Z]
11. final def choosing4[Z, A1, A2, A3, A4](f: (Z) ⇒ \/[A1, \/[A2, \/[A3, A4]]])(implicit fa1: F[A1], fa2: F[A2], fa3: F[A3], fa4: F[A4]): F[Z]
12. def clone()
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@native() @throws( ... )
13. def compose[G[_]](implicit G0: Contravariant[G]): Functor[[α]F[G[α]]]

The composition of Contravariant F and G, `[x]F[G[x]]`, is covariant.

The composition of Contravariant F and G, `[x]F[G[x]]`, is covariant.

Definition Classes
Contravariant
14. def contramap[A, B](fa: F[A])(f: (B) ⇒ A): F[B]

Transform `A`.

Transform `A`.

Definition Classes
DivisibleContravariant
Note

`contramap(r)(identity)` = `r`

15. def contravariantLaw
Definition Classes
Contravariant
16. val contravariantSyntax
Definition Classes
Contravariant
17. def decidableLaw
18. val decidableSyntax: DecidableSyntax[F]
19. final def divide[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: (C) ⇒ (A, B)): F[C]
Definition Classes
Divide
20. final def divide1[A1, Z](a1: F[A1])(f: (Z) ⇒ A1): F[Z]
Definition Classes
Divide
21. def divide3[A1, A2, A3, Z](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (Z) ⇒ (A1, A2, A3)): F[Z]
Definition Classes
Divide
22. def divide4[A1, A2, A3, A4, Z](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (Z) ⇒ (A1, A2, A3, A4)): F[Z]
Definition Classes
Divide
23. def divideLaw
Definition Classes
Divide
24. val divideSyntax: DivideSyntax[F]
Definition Classes
Divide
25. final def dividing1[A1, Z](f: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]
Definition Classes
Divide
26. final def dividing2[A1, A2, Z](f: (Z) ⇒ (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
Definition Classes
Divide
27. final def dividing3[A1, A2, A3, Z](f: (Z) ⇒ (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
Definition Classes
Divide
28. final def dividing4[A1, A2, A3, A4, Z](f: (Z) ⇒ (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
Definition Classes
Divide
29. def divisibleLaw
Definition Classes
Divisible
30. val divisibleSyntax: DivisibleSyntax[F]
Definition Classes
Divisible
31. final def eq(arg0: AnyRef)
Definition Classes
AnyRef
32. def equals(arg0: Any)
Definition Classes
AnyRef → Any
33. def finalize(): Unit
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
34. final def getClass(): Class[_]
Definition Classes
AnyRef → Any
Annotations
@native()
35. def hashCode(): Int
Definition Classes
AnyRef → Any
Annotations
@native()
36. def icompose[G[_]](implicit G0: Functor[G]): Contravariant[[α]F[G[α]]]

The composition of Contravariant F and Functor G, `[x]F[G[x]]`, is contravariant.

The composition of Contravariant F and Functor G, `[x]F[G[x]]`, is contravariant.

Definition Classes
Contravariant
37. val invariantAltSyntax
Definition Classes
InvariantAlt
38. val invariantApplicativeSyntax
Definition Classes
InvariantApplicative
39. def invariantFunctorLaw
Definition Classes
InvariantFunctor
40. val invariantFunctorSyntax
Definition Classes
InvariantFunctor
41. final def isInstanceOf[T0]
Definition Classes
Any
42. final def ne(arg0: AnyRef)
Definition Classes
AnyRef
43. final def notify(): Unit
Definition Classes
AnyRef
Annotations
@native()
44. final def notifyAll(): Unit
Definition Classes
AnyRef
Annotations
@native()
45. def product[G[_]](implicit G0: Contravariant[G]): Contravariant[[α](F[α], G[α])]

The product of Contravariant `F` and `G`, `[x](F[x], G[x]])`, is contravariant.

The product of Contravariant `F` and `G`, `[x](F[x], G[x]])`, is contravariant.

Definition Classes
Contravariant
46. final def synchronized[T0](arg0: ⇒ T0): T0
Definition Classes
AnyRef
47. def toString()
Definition Classes
AnyRef → Any
48. def tuple2[A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2]): F[(A1, A2)]
Definition Classes
Divide
49. final def wait(): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
50. final def wait(arg0: Long, arg1: Int): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
51. final def wait(arg0: Long): Unit
Definition Classes
AnyRef
Annotations
@native() @throws( ... )
52. final def xcoderiving1[Z, A1](f: (A1) ⇒ Z, g: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]
Definition Classes
InvariantAlt
53. final def xcoderiving2[Z, A1, A2](f: (\/[A1, A2]) ⇒ Z, g: (Z) ⇒ \/[A1, A2])(implicit a1: F[A1], a2: F[A2]): F[Z]
Definition Classes
InvariantAlt
54. final def xcoderiving3[Z, A1, A2, A3](f: (\/[A1, \/[A2, A3]]) ⇒ Z, g: (Z) ⇒ \/[A1, \/[A2, A3]])(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
Definition Classes
InvariantAlt
55. final def xcoderiving4[Z, A1, A2, A3, A4](f: (\/[A1, \/[A2, \/[A3, A4]]]) ⇒ Z, g: (Z) ⇒ \/[A1, \/[A2, \/[A3, A4]]])(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
Definition Classes
InvariantAlt
56. def xcoproduct1[Z, A1](a1: ⇒ F[A1])(f: (A1) ⇒ Z, g: (Z) ⇒ A1): F[Z]
Definition Classes
DecidableInvariantAlt
57. def xcoproduct2[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (\/[A1, A2]) ⇒ Z, g: (Z) ⇒ \/[A1, A2]): F[Z]
Definition Classes
DecidableInvariantAlt
58. def xcoproduct3[Z, A1, A2, A3](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (\/[A1, \/[A2, A3]]) ⇒ Z, g: (Z) ⇒ \/[A1, \/[A2, A3]]): F[Z]
Definition Classes
DecidableInvariantAlt
59. def xcoproduct4[Z, A1, A2, A3, A4](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (\/[A1, \/[A2, \/[A3, A4]]]) ⇒ Z, g: (Z) ⇒ \/[A1, \/[A2, \/[A3, A4]]]): F[Z]
Definition Classes
DecidableInvariantAlt
60. final def xderiving0[Z](z: ⇒ Z): F[Z]
Definition Classes
InvariantApplicative
61. final def xderiving1[Z, A1](f: (A1) ⇒ Z, g: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]
Definition Classes
InvariantApplicative
62. final def xderiving2[Z, A1, A2](f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
Definition Classes
InvariantApplicative
63. final def xderiving3[Z, A1, A2, A3](f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
Definition Classes
InvariantApplicative
64. final def xderiving4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
Definition Classes
InvariantApplicative
65. def xmap[A, B](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]

Converts `ma` to a value of type `F[B]` using the provided functions `f` and `g`.

Converts `ma` to a value of type `F[B]` using the provided functions `f` and `g`.

Definition Classes
ContravariantInvariantFunctor
66. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

Converts `ma` to a value of type `F[B]` using the provided bijection.

Converts `ma` to a value of type `F[B]` using the provided bijection.

Definition Classes
InvariantFunctor
67. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

Converts `ma` to a value of type `F[B]` using the provided isomorphism.

Converts `ma` to a value of type `F[B]` using the provided isomorphism.

Definition Classes
InvariantFunctor
68. def xproduct0[Z](z: ⇒ Z): F[Z]
Definition Classes
DivisibleInvariantApplicative
69. def xproduct1[Z, A1](a1: ⇒ F[A1])(f: (A1) ⇒ Z, g: (Z) ⇒ A1): F[Z]
Definition Classes
DivisibleInvariantApplicative
70. def xproduct2[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2)): F[Z]
Definition Classes
DivisibleInvariantApplicative
71. def xproduct3[Z, A1, A2, A3](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3)): F[Z]
Definition Classes
DivisibleInvariantApplicative
72. def xproduct4[Z, A1, A2, A3, A4](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4)): F[Z]
Definition Classes
DivisibleInvariantApplicative