t

scalaz

# IsomorphismAlign 

#### trait IsomorphismAlign[F[_], G[_]] extends Align[F] with IsomorphismFunctor[F, G]

Ordering
1. Alphabetic
2. By Inheritance
Inherited
1. IsomorphismAlign
2. IsomorphismFunctor
3. IsomorphismInvariantFunctor
4. Align
5. Functor
6. InvariantFunctor
7. AnyRef
8. Any
1. Hide All
2. Show All
Visibility
1. Public
2. All

### Type Members

1. trait AlignLaw extends FunctorLaw
Definition Classes
Align
2. trait FunctorLaw extends InvariantFunctorLaw
Definition Classes
Functor
3. trait InvariantFunctorLaw extends AnyRef
Definition Classes
InvariantFunctor

### Abstract Value Members

1. implicit abstract def G: Align[G]
2. abstract def iso: Isomorphism.<~>[F, G]

### Concrete Value Members

1. final def !=(arg0: Any)
Definition Classes
AnyRef → Any
2. final def ##(): Int
Definition Classes
AnyRef → Any
3. final def ==(arg0: Any)
Definition Classes
AnyRef → Any
4. def align[A, B](a: F[A], b: F[B]): F[\&/[A, B]]
Definition Classes
Align
5. def alignA[A, B](a: F[A], b: F[B]): F[Option[A]]
Definition Classes
Align
6. def alignB[A, B](a: F[A], b: F[B]): F[Option[B]]
Definition Classes
Align
7. def alignBoth[A, B](a: F[A], b: F[B]): F[Option[(A, B)]]
Definition Classes
Align
8. def alignLaw
Definition Classes
Align
9. def alignSwap[A, B](a: F[A], b: F[B]): F[\&/[B, A]]
Definition Classes
Align
10. val alignSyntax: AlignSyntax[F]
Definition Classes
Align
11. def alignThat[A, B](a: F[A], b: F[B]): F[Option[B]]
Definition Classes
Align
12. def alignThis[A, B](a: F[A], b: F[B]): F[Option[A]]
Definition Classes
Align
13. def alignWith[A, B, C](f: (\&/[A, B]) ⇒ C): (F[A], F[B]) ⇒ F[C]
Definition Classes
IsomorphismAlignAlign
14. def apply[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

Alias for `map`.

Alias for `map`.

Definition Classes
Functor
15. final def asInstanceOf[T0]: T0
Definition Classes
Any
16. def bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β]]]

The composition of Functor `F` and Bifunctor `G`, `[x, y]F[G[x, y]]`, is a Bifunctor

The composition of Functor `F` and Bifunctor `G`, `[x, y]F[G[x, y]]`, is a Bifunctor

Definition Classes
Functor
17. def clone()
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@native() @throws( ... )
18. def compose[G[_]](implicit G0: Functor[G]): Functor[[α]F[G[α]]]

The composition of Functors `F` and `G`, `[x]F[G[x]]`, is a Functor

The composition of Functors `F` and `G`, `[x]F[G[x]]`, is a Functor

Definition Classes
Functor
19. def counzip[A, B](a: \/[F[A], F[B]]): F[\/[A, B]]
Definition Classes
Functor
20. final def eq(arg0: AnyRef)
Definition Classes
AnyRef
21. def equals(arg0: Any)
Definition Classes
AnyRef → Any
22. def finalize(): Unit
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
23. def fpair[A](fa: F[A]): F[(A, A)]

Twin all `A`s in `fa`.

Twin all `A`s in `fa`.

Definition Classes
Functor
24. def fproduct[A, B](fa: F[A])(f: (A) ⇒ B): F[(A, B)]

Pair all `A`s in `fa` with the result of function application.

Pair all `A`s in `fa` with the result of function application.

Definition Classes
Functor
25. def functorLaw
Definition Classes
Functor
26. val functorSyntax: FunctorSyntax[F]
Definition Classes
Functor
27. final def getClass(): Class[_]
Definition Classes
AnyRef → Any
Annotations
@native()
28. def hashCode(): Int
Definition Classes
AnyRef → Any
Annotations
@native()
29. def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F[G[α]]]

The composition of Functor F and Contravariant G, `[x]F[G[x]]`, is contravariant.

The composition of Functor F and Contravariant G, `[x]F[G[x]]`, is contravariant.

Definition Classes
Functor
30. def invariantFunctorLaw
Definition Classes
InvariantFunctor
31. val invariantFunctorSyntax
Definition Classes
InvariantFunctor
32. final def isInstanceOf[T0]
Definition Classes
Any
33. def lift[A, B](f: (A) ⇒ B): (F[A]) ⇒ F[B]

Lift `f` into `F`.

Lift `f` into `F`.

Definition Classes
Functor
34. def map[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

Lift `f` into `F` and apply to `F[A]`.

Lift `f` into `F` and apply to `F[A]`.

Definition Classes
IsomorphismFunctorFunctor
35. def mapply[A, B](a: A)(f: F[(A) ⇒ B]): F[B]

Lift `apply(a)`, and apply the result to `f`.

Lift `apply(a)`, and apply the result to `f`.

Definition Classes
Functor
36. def merge[A](a1: F[A], a2: F[A])(implicit S: Semigroup[A]): F[A]
Definition Classes
Align
37. final def ne(arg0: AnyRef)
Definition Classes
AnyRef
38. final def notify(): Unit
Definition Classes
AnyRef
Annotations
@native()
39. final def notifyAll(): Unit
Definition Classes
AnyRef
Annotations
@native()
40. def pad[A, B]: (F[A], F[B]) ⇒ F[(Option[A], Option[B])]
Definition Classes
Align
41. def padWith[A, B, C](f: (Option[A], Option[B]) ⇒ C): (F[A], F[B]) ⇒ F[C]
Definition Classes
Align
42. def product[G[_]](implicit G0: Align[G]): Align[[α](F[α], G[α])]
Definition Classes
Align
43. def product[G[_]](implicit G0: Functor[G]): Functor[[α](F[α], G[α])]

The product of Functors `F` and `G`, `[x](F[x], G[x]])`, is a Functor

The product of Functors `F` and `G`, `[x](F[x], G[x]])`, is a Functor

Definition Classes
Functor
44. def strengthL[A, B](a: A, f: F[B]): F[(A, B)]

Inject `a` to the left of `B`s in `f`.

Inject `a` to the left of `B`s in `f`.

Definition Classes
Functor
45. def strengthR[A, B](f: F[A], b: B): F[(A, B)]

Inject `b` to the right of `A`s in `f`.

Inject `b` to the right of `A`s in `f`.

Definition Classes
Functor
46. final def synchronized[T0](arg0: ⇒ T0): T0
Definition Classes
AnyRef
47. def toString()
Definition Classes
AnyRef → Any
48. def void[A](fa: F[A]): F[Unit]

Empty `fa` of meaningful pure values, preserving its structure.

Empty `fa` of meaningful pure values, preserving its structure.

Definition Classes
Functor
49. final def wait(): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
50. final def wait(arg0: Long, arg1: Int): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
51. final def wait(arg0: Long): Unit
Definition Classes
AnyRef
Annotations
@native() @throws( ... )
52. def widen[A, B](fa: F[A])(implicit ev: <~<[A, B]): F[B]

Functors are covariant by nature, so we can treat an `F[A]` as an `F[B]` if `A` is a subtype of `B`.

Functors are covariant by nature, so we can treat an `F[A]` as an `F[B]` if `A` is a subtype of `B`.

Definition Classes
Functor
53. def xmap[A, B](ma: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]

Converts `ma` to a value of type `F[B]` using the provided functions `f` and `g`.

Converts `ma` to a value of type `F[B]` using the provided functions `f` and `g`.

Definition Classes
IsomorphismInvariantFunctorInvariantFunctor
54. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

Converts `ma` to a value of type `F[B]` using the provided bijection.

Converts `ma` to a value of type `F[B]` using the provided bijection.

Definition Classes
InvariantFunctor
55. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

Converts `ma` to a value of type `F[B]` using the provided isomorphism.

Converts `ma` to a value of type `F[B]` using the provided isomorphism.

Definition Classes
InvariantFunctor