t

scalaz

IsomorphismDecidable 

trait IsomorphismDecidable[F[_], G[_]] extends Decidable[F] with IsomorphismDivisible[F, G] with IsomorphismInvariantAlt[F, G]

Ordering
1. Alphabetic
2. By Inheritance
Inherited
1. IsomorphismDecidable
2. IsomorphismInvariantAlt
3. IsomorphismDivisible
4. IsomorphismInvariantApplicative
5. IsomorphismDivide
6. IsomorphismContravariant
7. IsomorphismInvariantFunctor
8. Decidable
9. InvariantAlt
10. Divisible
11. InvariantApplicative
12. Divide
13. Contravariant
14. InvariantFunctor
15. AnyRef
16. Any
1. Hide All
2. Show All
Visibility
1. Public
2. All

Type Members

1. trait
Definition Classes
Contravariant
2. trait DecidableLaw extends DivisibleLaw
Definition Classes
Decidable
3. trait DivideLaw extends ContravariantLaw
Definition Classes
Divide
4. trait DivisibleLaw extends DivideLaw
Definition Classes
Divisible
5. trait InvariantFunctorLaw extends AnyRef
Definition Classes
InvariantFunctor

Abstract Value Members

1. implicit abstract def G: Decidable[G]
2. abstract def iso: Isomorphism.<~>[F, G]

Concrete Value Members

1. final def !=(arg0: Any)
Definition Classes
AnyRef → Any
2. final def ##(): Int
Definition Classes
AnyRef → Any
3. final def ==(arg0: Any)
Definition Classes
AnyRef → Any
4. final def asInstanceOf[T0]: T0
Definition Classes
Any
5. final def choose[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (Z) ⇒ \/[A1, A2]): F[Z]
Definition Classes
Decidable
6. def choose1[Z, A1](a1: ⇒ F[A1])(f: (Z) ⇒ A1): F[Z]
Definition Classes
Decidable
7. def choose2[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (Z) ⇒ \/[A1, A2]): F[Z]
Definition Classes
IsomorphismDecidableDecidable
8. def choose3[Z, A1, A2, A3](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (Z) ⇒ \/[A1, \/[A2, A3]]): F[Z]
Definition Classes
Decidable
9. def choose4[Z, A1, A2, A3, A4](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (Z) ⇒ \/[A1, \/[A2, \/[A3, A4]]]): F[Z]
Definition Classes
Decidable
10. final def choosing2[Z, A1, A2](f: (Z) ⇒ \/[A1, A2])(implicit fa1: F[A1], fa2: F[A2]): F[Z]
Definition Classes
Decidable
11. final def choosing3[Z, A1, A2, A3](f: (Z) ⇒ \/[A1, \/[A2, A3]])(implicit fa1: F[A1], fa2: F[A2], fa3: F[A3]): F[Z]
Definition Classes
Decidable
12. final def choosing4[Z, A1, A2, A3, A4](f: (Z) ⇒ \/[A1, \/[A2, \/[A3, A4]]])(implicit fa1: F[A1], fa2: F[A2], fa3: F[A3], fa4: F[A4]): F[Z]
Definition Classes
Decidable
13. def clone()
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@native() @throws( ... )
14. def compose[G[_]](implicit G0: Contravariant[G]): Functor[[α]F[G[α]]]

The composition of Contravariant F and G, `[x]F[G[x]]`, is covariant.

The composition of Contravariant F and G, `[x]F[G[x]]`, is covariant.

Definition Classes
Contravariant
15. def conquer[A]: F[A]

Universally quantified instance of F[_]

Universally quantified instance of F[_]

Definition Classes
IsomorphismDivisibleDivisible
16. def contramap[A, B](r: F[A])(f: (B) ⇒ A): F[B]

Transform `A`.

Transform `A`.

Definition Classes
IsomorphismContravariantContravariant
Note

`contramap(r)(identity)` = `r`

17. def contravariantLaw
Definition Classes
Contravariant
18. val contravariantSyntax
Definition Classes
Contravariant
19. def decidableLaw
Definition Classes
Decidable
20. val decidableSyntax: DecidableSyntax[F]
Definition Classes
Decidable
21. final def divide[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: (C) ⇒ (A, B)): F[C]
Definition Classes
Divide
22. final def divide1[A1, Z](a1: F[A1])(f: (Z) ⇒ A1): F[Z]
Definition Classes
Divide
23. def divide2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: (C) ⇒ (A, B)): F[C]
Definition Classes
IsomorphismDivideDivide
24. def divide3[A1, A2, A3, Z](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (Z) ⇒ (A1, A2, A3)): F[Z]
Definition Classes
Divide
25. def divide4[A1, A2, A3, A4, Z](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (Z) ⇒ (A1, A2, A3, A4)): F[Z]
Definition Classes
Divide
26. def divideLaw
Definition Classes
Divide
27. val divideSyntax: DivideSyntax[F]
Definition Classes
Divide
28. final def dividing1[A1, Z](f: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]
Definition Classes
Divide
29. final def dividing2[A1, A2, Z](f: (Z) ⇒ (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
Definition Classes
Divide
30. final def dividing3[A1, A2, A3, Z](f: (Z) ⇒ (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
Definition Classes
Divide
31. final def dividing4[A1, A2, A3, A4, Z](f: (Z) ⇒ (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
Definition Classes
Divide
32. def divisibleLaw
Definition Classes
Divisible
33. val divisibleSyntax: DivisibleSyntax[F]
Definition Classes
Divisible
34. final def eq(arg0: AnyRef)
Definition Classes
AnyRef
35. def equals(arg0: Any)
Definition Classes
AnyRef → Any
36. def finalize(): Unit
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
37. final def getClass(): Class[_]
Definition Classes
AnyRef → Any
Annotations
@native()
38. def hashCode(): Int
Definition Classes
AnyRef → Any
Annotations
@native()
39. def icompose[G[_]](implicit G0: Functor[G]): Contravariant[[α]F[G[α]]]

The composition of Contravariant F and Functor G, `[x]F[G[x]]`, is contravariant.

The composition of Contravariant F and Functor G, `[x]F[G[x]]`, is contravariant.

Definition Classes
Contravariant
40. val invariantAltSyntax
Definition Classes
InvariantAlt
41. val invariantApplicativeSyntax
Definition Classes
InvariantApplicative
42. def invariantFunctorLaw
Definition Classes
InvariantFunctor
43. val invariantFunctorSyntax
Definition Classes
InvariantFunctor
44. final def isInstanceOf[T0]
Definition Classes
Any
45. final def ne(arg0: AnyRef)
Definition Classes
AnyRef
46. final def notify(): Unit
Definition Classes
AnyRef
Annotations
@native()
47. final def notifyAll(): Unit
Definition Classes
AnyRef
Annotations
@native()
48. def product[G[_]](implicit G0: Contravariant[G]): Contravariant[[α](F[α], G[α])]

The product of Contravariant `F` and `G`, `[x](F[x], G[x]])`, is contravariant.

The product of Contravariant `F` and `G`, `[x](F[x], G[x]])`, is contravariant.

Definition Classes
Contravariant
49. final def synchronized[T0](arg0: ⇒ T0): T0
Definition Classes
AnyRef
50. def toString()
Definition Classes
AnyRef → Any
51. def tuple2[A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2]): F[(A1, A2)]
Definition Classes
Divide
52. final def wait(): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
53. final def wait(arg0: Long, arg1: Int): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
54. final def wait(arg0: Long): Unit
Definition Classes
AnyRef
Annotations
@native() @throws( ... )
55. final def xcoderiving1[Z, A1](f: (A1) ⇒ Z, g: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]
Definition Classes
InvariantAlt
56. final def xcoderiving2[Z, A1, A2](f: (\/[A1, A2]) ⇒ Z, g: (Z) ⇒ \/[A1, A2])(implicit a1: F[A1], a2: F[A2]): F[Z]
Definition Classes
InvariantAlt
57. final def xcoderiving3[Z, A1, A2, A3](f: (\/[A1, \/[A2, A3]]) ⇒ Z, g: (Z) ⇒ \/[A1, \/[A2, A3]])(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
Definition Classes
InvariantAlt
58. final def xcoderiving4[Z, A1, A2, A3, A4](f: (\/[A1, \/[A2, \/[A3, A4]]]) ⇒ Z, g: (Z) ⇒ \/[A1, \/[A2, \/[A3, A4]]])(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
Definition Classes
InvariantAlt
59. def xcoproduct1[Z, A1](a1: ⇒ F[A1])(f: (A1) ⇒ Z, g: (Z) ⇒ A1): F[Z]
Definition Classes
IsomorphismDecidableDecidableInvariantAlt
60. def xcoproduct2[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (\/[A1, A2]) ⇒ Z, g: (Z) ⇒ \/[A1, A2]): F[Z]
61. def xcoproduct3[Z, A1, A2, A3](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (\/[A1, \/[A2, A3]]) ⇒ Z, g: (Z) ⇒ \/[A1, \/[A2, A3]]): F[Z]
Definition Classes
IsomorphismDecidableDecidableInvariantAlt
62. def xcoproduct4[Z, A1, A2, A3, A4](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (\/[A1, \/[A2, \/[A3, A4]]]) ⇒ Z, g: (Z) ⇒ \/[A1, \/[A2, \/[A3, A4]]]): F[Z]
Definition Classes
IsomorphismDecidableDecidableInvariantAlt
63. final def xderiving0[Z](z: ⇒ Z): F[Z]
Definition Classes
InvariantApplicative
64. final def xderiving1[Z, A1](f: (A1) ⇒ Z, g: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]
Definition Classes
InvariantApplicative
65. final def xderiving2[Z, A1, A2](f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
Definition Classes
InvariantApplicative
66. final def xderiving3[Z, A1, A2, A3](f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
Definition Classes
InvariantApplicative
67. final def xderiving4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
Definition Classes
InvariantApplicative
68. def xmap[A, B](ma: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]

Converts `ma` to a value of type `F[B]` using the provided functions `f` and `g`.

Converts `ma` to a value of type `F[B]` using the provided functions `f` and `g`.

Definition Classes
IsomorphismInvariantFunctorInvariantFunctor
69. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

Converts `ma` to a value of type `F[B]` using the provided bijection.

Converts `ma` to a value of type `F[B]` using the provided bijection.

Definition Classes
InvariantFunctor
70. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

Converts `ma` to a value of type `F[B]` using the provided isomorphism.

Converts `ma` to a value of type `F[B]` using the provided isomorphism.

Definition Classes
InvariantFunctor
71. def xproduct0[Z](z: ⇒ Z): F[Z]
72. def xproduct1[Z, A1](a1: ⇒ F[A1])(f: (A1) ⇒ Z, g: (Z) ⇒ A1): F[Z]
73. def xproduct2[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2)): F[Z]
74. def xproduct3[Z, A1, A2, A3](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3)): F[Z]
75. def xproduct4[Z, A1, A2, A3, A4](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4)): F[Z]