t

scalaz

# IsomorphismDivisible 

#### trait IsomorphismDivisible[F[_], G[_]] extends Divisible[F] with IsomorphismDivide[F, G] with IsomorphismInvariantApplicative[F, G]

Ordering
1. Alphabetic
2. By Inheritance
Inherited
1. IsomorphismDivisible
2. IsomorphismInvariantApplicative
3. IsomorphismDivide
4. IsomorphismContravariant
5. IsomorphismInvariantFunctor
6. Divisible
7. InvariantApplicative
8. Divide
9. Contravariant
10. InvariantFunctor
11. AnyRef
12. Any
1. Hide All
2. Show All
Visibility
1. Public
2. All

### Type Members

1. trait
Definition Classes
Contravariant
2. trait DivideLaw extends ContravariantLaw
Definition Classes
Divide
3. trait DivisibleLaw extends DivideLaw
Definition Classes
Divisible
4. trait InvariantFunctorLaw extends AnyRef
Definition Classes
InvariantFunctor

### Abstract Value Members

1. implicit abstract def G: Divisible[G]
2. abstract def iso: Isomorphism.<~>[F, G]

### Concrete Value Members

1. final def !=(arg0: Any)
Definition Classes
AnyRef → Any
2. final def ##(): Int
Definition Classes
AnyRef → Any
3. final def ==(arg0: Any)
Definition Classes
AnyRef → Any
4. final def asInstanceOf[T0]: T0
Definition Classes
Any
5. def clone()
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@native() @throws( ... )
6. def compose[G[_]](implicit G0: Contravariant[G]): Functor[[α]F[G[α]]]

The composition of Contravariant F and G, `[x]F[G[x]]`, is covariant.

The composition of Contravariant F and G, `[x]F[G[x]]`, is covariant.

Definition Classes
Contravariant
7. def conquer[A]: F[A]

Universally quantified instance of F[_]

Universally quantified instance of F[_]

Definition Classes
IsomorphismDivisibleDivisible
8. def contramap[A, B](r: F[A])(f: (B) ⇒ A): F[B]

Transform `A`.

Transform `A`.

Definition Classes
IsomorphismContravariantContravariant
Note

`contramap(r)(identity)` = `r`

9. def contravariantLaw
Definition Classes
Contravariant
10. val contravariantSyntax
Definition Classes
Contravariant
11. final def divide[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: (C) ⇒ (A, B)): F[C]
Definition Classes
Divide
12. final def divide1[A1, Z](a1: F[A1])(f: (Z) ⇒ A1): F[Z]
Definition Classes
Divide
13. def divide2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: (C) ⇒ (A, B)): F[C]
Definition Classes
IsomorphismDivideDivide
14. def divide3[A1, A2, A3, Z](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (Z) ⇒ (A1, A2, A3)): F[Z]
Definition Classes
Divide
15. def divide4[A1, A2, A3, A4, Z](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (Z) ⇒ (A1, A2, A3, A4)): F[Z]
Definition Classes
Divide
16. def divideLaw
Definition Classes
Divide
17. val divideSyntax: DivideSyntax[F]
Definition Classes
Divide
18. final def dividing1[A1, Z](f: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]
Definition Classes
Divide
19. final def dividing2[A1, A2, Z](f: (Z) ⇒ (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
Definition Classes
Divide
20. final def dividing3[A1, A2, A3, Z](f: (Z) ⇒ (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
Definition Classes
Divide
21. final def dividing4[A1, A2, A3, A4, Z](f: (Z) ⇒ (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
Definition Classes
Divide
22. def divisibleLaw
Definition Classes
Divisible
23. val divisibleSyntax: DivisibleSyntax[F]
Definition Classes
Divisible
24. final def eq(arg0: AnyRef)
Definition Classes
AnyRef
25. def equals(arg0: Any)
Definition Classes
AnyRef → Any
26. def finalize(): Unit
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
27. final def getClass(): Class[_]
Definition Classes
AnyRef → Any
Annotations
@native()
28. def hashCode(): Int
Definition Classes
AnyRef → Any
Annotations
@native()
29. def icompose[G[_]](implicit G0: Functor[G]): Contravariant[[α]F[G[α]]]

The composition of Contravariant F and Functor G, `[x]F[G[x]]`, is contravariant.

The composition of Contravariant F and Functor G, `[x]F[G[x]]`, is contravariant.

Definition Classes
Contravariant
30. val invariantApplicativeSyntax
Definition Classes
InvariantApplicative
31. def invariantFunctorLaw
Definition Classes
InvariantFunctor
32. val invariantFunctorSyntax
Definition Classes
InvariantFunctor
33. final def isInstanceOf[T0]
Definition Classes
Any
34. final def ne(arg0: AnyRef)
Definition Classes
AnyRef
35. final def notify(): Unit
Definition Classes
AnyRef
Annotations
@native()
36. final def notifyAll(): Unit
Definition Classes
AnyRef
Annotations
@native()
37. def product[G[_]](implicit G0: Contravariant[G]): Contravariant[[α](F[α], G[α])]

The product of Contravariant `F` and `G`, `[x](F[x], G[x]])`, is contravariant.

The product of Contravariant `F` and `G`, `[x](F[x], G[x]])`, is contravariant.

Definition Classes
Contravariant
38. final def synchronized[T0](arg0: ⇒ T0): T0
Definition Classes
AnyRef
39. def toString()
Definition Classes
AnyRef → Any
40. def tuple2[A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2]): F[(A1, A2)]
Definition Classes
Divide
41. final def wait(): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
42. final def wait(arg0: Long, arg1: Int): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
43. final def wait(arg0: Long): Unit
Definition Classes
AnyRef
Annotations
@native() @throws( ... )
44. final def xderiving0[Z](z: ⇒ Z): F[Z]
Definition Classes
InvariantApplicative
45. final def xderiving1[Z, A1](f: (A1) ⇒ Z, g: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]
Definition Classes
InvariantApplicative
46. final def xderiving2[Z, A1, A2](f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
Definition Classes
InvariantApplicative
47. final def xderiving3[Z, A1, A2, A3](f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
Definition Classes
InvariantApplicative
48. final def xderiving4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
Definition Classes
InvariantApplicative
49. def xmap[A, B](ma: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]

Converts `ma` to a value of type `F[B]` using the provided functions `f` and `g`.

Converts `ma` to a value of type `F[B]` using the provided functions `f` and `g`.

Definition Classes
IsomorphismInvariantFunctorInvariantFunctor
50. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

Converts `ma` to a value of type `F[B]` using the provided bijection.

Converts `ma` to a value of type `F[B]` using the provided bijection.

Definition Classes
InvariantFunctor
51. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

Converts `ma` to a value of type `F[B]` using the provided isomorphism.

Converts `ma` to a value of type `F[B]` using the provided isomorphism.

Definition Classes
InvariantFunctor
52. def xproduct0[Z](z: ⇒ Z): F[Z]
53. def xproduct1[Z, A1](a1: ⇒ F[A1])(f: (A1) ⇒ Z, g: (Z) ⇒ A1): F[Z]
54. def xproduct2[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2)): F[Z]
55. def xproduct3[Z, A1, A2, A3](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3)): F[Z]
56. def xproduct4[Z, A1, A2, A3, A4](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4)): F[Z]