t

scalaz

# IsomorphismEnum 

#### trait IsomorphismEnum[F, G] extends Enum[F] with IsomorphismOrder[F, G]

Source
Enum.scala
Linear Supertypes
Ordering
1. Alphabetic
2. By Inheritance
Inherited
1. IsomorphismEnum
2. IsomorphismOrder
3. IsomorphismEqual
4. Enum
5. Order
6. Equal
7. AnyRef
8. Any
1. Hide All
2. Show All
Visibility
1. Public
2. All

### Type Members

1. trait EnumLaw extends OrderLaw
Definition Classes
Enum
2. trait EqualLaw extends AnyRef
Definition Classes
Equal
3. trait OrderLaw extends EqualLaw
Definition Classes
Order

### Abstract Value Members

1. implicit abstract def G: Enum[G]
2. abstract def iso: Isomorphism.<=>[F, G]
Definition Classes
IsomorphismEqual

### Concrete Value Members

1. final def !=(arg0: Any)
Definition Classes
AnyRef → Any
2. final def ##(): Int
Definition Classes
AnyRef → Any
3. final def ==(arg0: Any)
Definition Classes
AnyRef → Any
4. def apply(x: F, y: F)
Definition Classes
Order
5. final def asInstanceOf[T0]: T0
Definition Classes
Any
6. def clone()
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@native() @throws( ... )
7. def contramap[B](f: (B) ⇒ F): Order[B]
Definition Classes
OrderEqual
8. def enumLaw
Definition Classes
Enum
9. val enumSyntax: EnumSyntax[F]
Definition Classes
Enum
10. final def eq(arg0: AnyRef)
Definition Classes
AnyRef
11. def equal(x: F, y: F)
Definition Classes
IsomorphismOrderIsomorphismEqualOrderEqual
12. def equalIsNatural

returns

true, if `equal(f1, f2)` is known to be equivalent to `f1 == f2`

Definition Classes
Equal
13. def equalLaw
Definition Classes
Equal
14. val equalSyntax: EqualSyntax[F]
Definition Classes
Equal
15. def equals(arg0: Any)
Definition Classes
AnyRef → Any
16. def finalize(): Unit
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
17. def from(a: F): EphemeralStream[F]
Definition Classes
Enum
18. def fromStep(n: Int, a: F): EphemeralStream[F]
Definition Classes
Enum
19. def fromStepTo(n: Int, a: F, z: F): EphemeralStream[F]
Definition Classes
Enum
20. def fromStepToL(n: Int, a: F, z: F): IList[F]
Definition Classes
Enum
21. def fromTo(a: F, z: F): EphemeralStream[F]
Definition Classes
Enum
22. def fromToL(a: F, z: F): IList[F]
Definition Classes
Enum
23. final def getClass(): Class[_]
Definition Classes
AnyRef → Any
Annotations
@native()
24. def greaterThan(x: F, y: F)
Definition Classes
Order
25. def greaterThanOrEqual(x: F, y: F)
Definition Classes
Order
26. def hashCode(): Int
Definition Classes
AnyRef → Any
Annotations
@native()
27. final def isInstanceOf[T0]
Definition Classes
Any
28. def lessThan(x: F, y: F)
Definition Classes
Order
29. def lessThanOrEqual(x: F, y: F)
Definition Classes
Order
30. def max: Option[F]
Definition Classes
Enum
31. def max(x: F, y: F): F
Definition Classes
Order
32. def min: Option[F]
Definition Classes
Enum
33. def min(x: F, y: F): F
Definition Classes
Order
34. final def ne(arg0: AnyRef)
Definition Classes
AnyRef
35. final def notify(): Unit
Definition Classes
AnyRef
Annotations
@native()
36. final def notifyAll(): Unit
Definition Classes
AnyRef
Annotations
@native()
37. def order(x: F, y: F)
Definition Classes
IsomorphismOrderOrder
38. def orderLaw
Definition Classes
Order
39. val orderSyntax: OrderSyntax[F]
Definition Classes
Order
40. def pred(a: F): F
Definition Classes
IsomorphismEnumEnum
41. def predState[X](f: (F) ⇒ X): State[F, X]

Produce a state value that executes the predecessor (`pred`) on each spin and executing the given function on the current value.

Produce a state value that executes the predecessor (`pred`) on each spin and executing the given function on the current value. This is useful to implement decremental looping. Evaluating the state value requires a beginning to decrement from.

f

The function to execute on each spin of the state value.

Definition Classes
Enum
42. def predStateMax[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y): Option[Y]

Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given mapping function.

Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given mapping function. This is useful to implement decremental looping.

f

The function to execute on each spin of the state value.

k

The mapping function.

Definition Classes
Enum
43. def predStateMaxM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y]): Option[Y]

Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given binding function.

Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given binding function. This is useful to implement decremental looping.

f

The function to execute on each spin of the state value.

k

The binding function.

Definition Classes
Enum
44. def predStateZero[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y)(implicit m: Monoid[F]): Y

Produce a value that starts at zero (`Monoid.zero`) and decrements through a state value with the given mapping function.

Produce a value that starts at zero (`Monoid.zero`) and decrements through a state value with the given mapping function. This is useful to implement decremental looping.

f

The function to execute on each spin of the state value.

k

The mapping function.

m

The implementation of the zero function from which to start.

Definition Classes
Enum
45. def predStateZeroM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y])(implicit m: Monoid[F]): Y

Produce a value that starts at zero (`Monoid.zero`) and decrements through a state value with the given binding function.

Produce a value that starts at zero (`Monoid.zero`) and decrements through a state value with the given binding function. This is useful to implement decremental looping.

f

The function to execute on each spin of the state value.

k

The binding function.

m

The implementation of the zero function from which to start.

Definition Classes
Enum
46. def predn(n: Int, a: F): F
Definition Classes
Enum
47. def predx: Kleisli[Option, F, F]

Moves to the predecessor, unless at the minimum.

Moves to the predecessor, unless at the minimum.

Definition Classes
Enum
48. def reverseOrder: Order[F]
Definition Classes
Order
49. def sort(x: F, y: F): (F, F)
Definition Classes
Order
50. def succ(a: F): F
Definition Classes
IsomorphismEnumEnum
51. def succState[X](f: (F) ⇒ X): State[F, X]

Produce a state value that executes the successor (`succ`) on each spin and executing the given function on the current value.

Produce a state value that executes the successor (`succ`) on each spin and executing the given function on the current value. This is useful to implement incremental looping. Evaluating the state value requires a beginning to increment from.

f

The function to execute on each spin of the state value.

Definition Classes
Enum
52. def succStateMin[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y): Option[Y]

Produce a value that starts at the minimum (if it exists) and increments through a state value with the given mapping function.

Produce a value that starts at the minimum (if it exists) and increments through a state value with the given mapping function. This is useful to implement incremental looping.

f

The function to execute on each spin of the state value.

k

The mapping function.

Definition Classes
Enum
53. def succStateMinM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y]): Option[Y]

Produce a value that starts at the minimum (if it exists) and increments through a state value with the given binding function.

Produce a value that starts at the minimum (if it exists) and increments through a state value with the given binding function. This is useful to implement incremental looping.

f

The function to execute on each spin of the state value.

k

The binding function.

Definition Classes
Enum
54. def succStateZero[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y)(implicit m: Monoid[F]): Y

Produce a value that starts at zero (`Monoid.zero`) and increments through a state value with the given mapping function.

Produce a value that starts at zero (`Monoid.zero`) and increments through a state value with the given mapping function. This is useful to implement incremental looping.

f

The function to execute on each spin of the state value.

k

The mapping function.

m

The implementation of the zero function from which to start.

Definition Classes
Enum
55. def succStateZeroM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y])(implicit m: Monoid[F]): Y

Produce a value that starts at zero (`Monoid.zero`) and increments through a state value with the given binding function.

Produce a value that starts at zero (`Monoid.zero`) and increments through a state value with the given binding function. This is useful to implement incremental looping.

f

The function to execute on each spin of the state value.

k

The binding function.

m

The implementation of the zero function from which to start.

Definition Classes
Enum
56. def succn(n: Int, a: F): F
Definition Classes
Enum
57. def succx: Kleisli[Option, F, F]

Moves to the successor, unless at the maximum.

Moves to the successor, unless at the maximum.

Definition Classes
Enum
58. final def synchronized[T0](arg0: ⇒ T0): T0
Definition Classes
AnyRef
59. def toScalaOrdering

Definition Classes
Order
Note

`Order.fromScalaOrdering(toScalaOrdering).order(x, y)`

### `this.order(x, y)`

60. def toString()
Definition Classes
AnyRef → Any
61. final def wait(): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
62. final def wait(arg0: Long, arg1: Int): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
63. final def wait(arg0: Long): Unit
Definition Classes
AnyRef
Annotations
@native() @throws( ... )