t

# SndCovariant 

#### trait SndCovariant[C] extends Functor[[β\$0\$]=>:[C, β\$0\$]]

Attributes
protected[this]
Source
Profunctor.scala
Linear Supertypes
Functor[[β\$0\$]=>:[C, β\$0\$]], InvariantFunctor[[β\$0\$]=>:[C, β\$0\$]], AnyRef, Any
Ordering
1. Alphabetic
2. By Inheritance
Inherited
1. SndCovariant
2. Functor
3. InvariantFunctor
4. AnyRef
5. Any
1. Hide All
2. Show All
Visibility
1. Public
2. All

### Type Members

1. trait FunctorLaw extends InvariantFunctorLaw
Definition Classes
Functor
2. trait InvariantFunctorLaw extends AnyRef
Definition Classes
InvariantFunctor

### Value Members

1. final def !=(arg0: Any)
Definition Classes
AnyRef → Any
2. final def ##(): Int
Definition Classes
AnyRef → Any
3. final def ==(arg0: Any)
Definition Classes
AnyRef → Any
4. def apply[A, B](fa: =>:[C, A])(f: (A) ⇒ B): =>:[C, B]

Alias for `map`.

Alias for `map`.

Definition Classes
Functor
5. final def asInstanceOf[T0]: T0
Definition Classes
Any
6. def bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]=>:[C, G[α, β]]]

The composition of Functor `F` and Bifunctor `G`, `[x, y]F[G[x, y]]`, is a Bifunctor

The composition of Functor `F` and Bifunctor `G`, `[x, y]F[G[x, y]]`, is a Bifunctor

Definition Classes
Functor
7. def clone()
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@native() @throws( ... )
8. def compose[G[_]](implicit G0: Functor[G]): Functor[[α]=>:[C, G[α]]]

The composition of Functors `F` and `G`, `[x]F[G[x]]`, is a Functor

The composition of Functors `F` and `G`, `[x]F[G[x]]`, is a Functor

Definition Classes
Functor
9. def counzip[A, B](a: \/[=>:[C, A], =>:[C, B]]): =>:[C, \/[A, B]]
Definition Classes
Functor
10. final def eq(arg0: AnyRef)
Definition Classes
AnyRef
11. def equals(arg0: Any)
Definition Classes
AnyRef → Any
12. def finalize(): Unit
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
13. def fpair[A](fa: =>:[C, A]): =>:[C, (A, A)]

Twin all `A`s in `fa`.

Twin all `A`s in `fa`.

Definition Classes
Functor
14. def fproduct[A, B](fa: =>:[C, A])(f: (A) ⇒ B): =>:[C, (A, B)]

Pair all `A`s in `fa` with the result of function application.

Pair all `A`s in `fa` with the result of function application.

Definition Classes
Functor
15. def functorLaw
Definition Classes
Functor
16. val functorSyntax: FunctorSyntax[[β\$0\$]=>:[C, β\$0\$]]
Definition Classes
Functor
17. final def getClass(): Class[_]
Definition Classes
AnyRef → Any
Annotations
@native()
18. def hashCode(): Int
Definition Classes
AnyRef → Any
Annotations
@native()
19. def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]=>:[C, G[α]]]

The composition of Functor F and Contravariant G, `[x]F[G[x]]`, is contravariant.

The composition of Functor F and Contravariant G, `[x]F[G[x]]`, is contravariant.

Definition Classes
Functor
20. def invariantFunctorLaw
Definition Classes
InvariantFunctor
21. val invariantFunctorSyntax: InvariantFunctorSyntax[[β\$0\$]=>:[C, β\$0\$]]
Definition Classes
InvariantFunctor
22. final def isInstanceOf[T0]
Definition Classes
Any
23. def lift[A, B](f: (A) ⇒ B): (=>:[C, A]) ⇒ =>:[C, B]

Lift `f` into `F`.

Lift `f` into `F`.

Definition Classes
Functor
24. def map[A, B](fa: =>:[C, A])(f: (A) ⇒ B): =>:[C, B]

Lift `f` into `F` and apply to `F[A]`.

Lift `f` into `F` and apply to `F[A]`.

Definition Classes
SndCovariantFunctor
25. def mapply[A, B](a: A)(f: =>:[C, (A) ⇒ B]): =>:[C, B]

Lift `apply(a)`, and apply the result to `f`.

Lift `apply(a)`, and apply the result to `f`.

Definition Classes
Functor
26. final def ne(arg0: AnyRef)
Definition Classes
AnyRef
27. final def notify(): Unit
Definition Classes
AnyRef
Annotations
@native()
28. final def notifyAll(): Unit
Definition Classes
AnyRef
Annotations
@native()
29. def product[G[_]](implicit G0: Functor[G]): Functor[[α](=>:[C, α], G[α])]

The product of Functors `F` and `G`, `[x](F[x], G[x]])`, is a Functor

The product of Functors `F` and `G`, `[x](F[x], G[x]])`, is a Functor

Definition Classes
Functor
30. def strengthL[A, B](a: A, f: =>:[C, B]): =>:[C, (A, B)]

Inject `a` to the left of `B`s in `f`.

Inject `a` to the left of `B`s in `f`.

Definition Classes
Functor
31. def strengthR[A, B](f: =>:[C, A], b: B): =>:[C, (A, B)]

Inject `b` to the right of `A`s in `f`.

Inject `b` to the right of `A`s in `f`.

Definition Classes
Functor
32. final def synchronized[T0](arg0: ⇒ T0): T0
Definition Classes
AnyRef
33. def toString()
Definition Classes
AnyRef → Any
34. def void[A](fa: =>:[C, A]): =>:[C, Unit]

Empty `fa` of meaningful pure values, preserving its structure.

Empty `fa` of meaningful pure values, preserving its structure.

Definition Classes
Functor
35. final def wait(): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
36. final def wait(arg0: Long, arg1: Int): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
37. final def wait(arg0: Long): Unit
Definition Classes
AnyRef
Annotations
@native() @throws( ... )
38. def widen[A, B](fa: =>:[C, A])(implicit ev: <~<[A, B]): =>:[C, B]

Functors are covariant by nature, so we can treat an `F[A]` as an `F[B]` if `A` is a subtype of `B`.

Functors are covariant by nature, so we can treat an `F[A]` as an `F[B]` if `A` is a subtype of `B`.

Definition Classes
Functor
39. def xmap[A, B](fa: =>:[C, A], f: (A) ⇒ B, g: (B) ⇒ A): =>:[C, B]

Converts `ma` to a value of type `F[B]` using the provided functions `f` and `g`.

Converts `ma` to a value of type `F[B]` using the provided functions `f` and `g`.

Definition Classes
FunctorInvariantFunctor
40. def xmapb[A, B](ma: =>:[C, A])(b: Bijection[A, B]): =>:[C, B]

Converts `ma` to a value of type `F[B]` using the provided bijection.

Converts `ma` to a value of type `F[B]` using the provided bijection.

Definition Classes
InvariantFunctor
41. def xmapi[A, B](ma: =>:[C, A])(iso: Isomorphism.<=>[A, B]): =>:[C, B]

Converts `ma` to a value of type `F[B]` using the provided isomorphism.

Converts `ma` to a value of type `F[B]` using the provided isomorphism.

Definition Classes
InvariantFunctor